中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

如圖,已知橢圓的左、右焦點分別
,其上頂點為已知是邊長為的正三角形.
(1)求橢圓的方程;
(2)過點任作一動直線交橢圓兩點,記.若在線段上取一點,使得,當直線運動時,點在某一定直線上運動,求出該定直線的方程.

(1)橢圓的方程為;(2)定直線的方程為.

解析試題分析:(1)因為是邊長為2的正三角形,所以,橢圓的方程為;(2)設直線方程為,與橢圓方程聯立,結合韋達定理,表示出
設點的坐標為則由,解得, 故點在定直線上.
試題解析:(Ⅰ)因為是邊長為2的正三角形,所以,所以,橢圓的方程為
(Ⅱ)由題意知,直線的斜率必存在,設其方程為.并設
消去
 

設點的坐標為則由
解得: 
故點在定直線上.
考點:橢圓的性質、設而不求思想、定直線問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

過點作傾斜角為的直線與曲線C交于不同的兩點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知分別是橢圓的四個頂點,△是一個邊長為2的等邊三角形,其外接圓為圓
(1)求橢圓及圓的方程;
(2)若點是圓劣弧上一動點(點異于端點),直線分別交線段,橢圓于點,直線交于點
(ⅰ)求的最大值;
(ⅱ)試問:兩點的橫坐標之和是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,已知定點F(1,0),點軸上運動,點軸上,點
為平面內的動點,且滿足
(1)求動點的軌跡的方程;
(2)設點是直線上任意一點,過點作軌跡的兩條切線,切點分別為,設切線的斜率分別為,直線的斜率為,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線的方程為,過原點作斜率為的直線和曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,如此下去,一般地,過點作斜率為的直線與曲線相交,另一個交點記為,設點).
(1)指出,并求的關系式();
(2)求)的通項公式,并指出點列,向哪一點無限接近?說明理由;
(3)令,數列的前項和為,試比較的大小,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知雙曲線的中心在原點,離心率為2,一個焦點為F(-2,0).
(1)求雙曲線方程;
(2)設Q是雙曲線上一點,且過點F,Q的直線l與y軸交于點M,若= 2,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設拋物線:的準線與軸交于點,焦點為;橢圓為焦點,離心率.設的一個交點.

(1)求橢圓的方程.
(2)直線的右焦點,交兩點,且等于的周長,求的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓過點,且離心率為.斜率為的直線與橢圓交于AB兩點,以為底邊作等腰三角形,頂點為.
(1)求橢圓的方程;
(2)求△的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,橢圓的右焦點與拋物線的焦點重合,過且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點,且

(1)求橢圓的標準方程;
(2)設P為橢圓上一點,若過點M(2,0)的直線與橢圓相交于不同兩點A和B,且滿足(O為坐標原點),求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案