中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設方程2x2+x+p=0的解集為A,方程2x2+qx+2=0的解集為B,A∩B={
12
},求A∪B.
分析:根據兩集合的交集中的元素屬于A又屬于B,將x的值代入方程求出p與q的值,即可確定出兩集合的并集.
解答:解:∵A∩B={
1
2
},∴
1
2
∈A,
1
2
∈B,
將x=
1
2
代入2x2+x+p=0得:
1
2
+
1
2
+p=0,即p=-1;將x=
1
2
代入2x2+qx+2=0得:
1
2
+
1
2
q+2=0,即q=-5,
又方程2x2+x-1=0的解為x=-1或x=
1
2
;方程2x2-5x+2=0的解為x=
1
2
或2,
∴A={-1,
1
2
},B={
1
2
,2},
則A∪B={-1,
1
2
,2}.
點評:此題考查了并集及其運算,以及交集及其運算,熟練掌握各自的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

以下四個關于圓錐曲線的命題中:
①設A、B為兩個定點,k為正常數,|
PA
|+|
PB
|=k
,則動點P的軌跡為橢圓;
②雙曲線
x2
25
-
y2
9
=1
與橢圓
x2
35
+y2=1
有相同的焦點;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率,則0<a<3;
④和定點A(5,0)及定直線l:x=
25
4
的距離之比為
5
4
的點的軌跡方程為
x2
16
-
y2
9
=1

其中真命題的序號為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區域內作答,解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=[
 
1
1
],并且矩陣M對應的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數方程)
在極坐標系中,曲線C的極坐標方程為p=2
2
sin(θ-
π
4
),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分8分.老教材試題第1小題4分,第2小題4分;新教材試題第1小題3分,第2小題5分.)
(老教材)
設a為實數,方程2x2-8x+a+1=0的一個虛根的模是
5

(1)求a的值;
(2)在復數范圍內求方程的解.
(新教材)
設函數f(x)=2x+p,(p為常數且p∈R)
(1)若f(3)=5,求f(x)的解析式;
(2)在滿足(1)的條件下,解方程:f-1(x)=2+log2x2

查看答案和解析>>

科目:高中數學 來源: 題型:

以下四個關于圓錐曲線的命題中:
①設A、B為兩個定點,k為正常數,|
PA
|+|
PB
|=k
,則動點P的軌跡為橢圓;
②雙曲線
x2
25
-
y2
9
=1
與橢圓
x2
35
+y2=1
有相同的焦點;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④和定點A(5,0)及定直線l:x=
16
5
的距離之比為
5
4
的點的軌跡方程為
x2
16
-
y2
9
=1

其中真命題的序號為
 

查看答案和解析>>

同步練習冊答案