中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知數列{an}滿足:a1=1,a2=a(a>0).正項數列{bn}滿足bn2=anan+1(n∈N*).若 {bn}是公比為
2
的等比數列
(1)求{an}的通項公式;
(2)若a=
2
,Sn為{an}的前n項和,記Tn=
17Sn-S2n
an+1
Tn0為數列{Tn}的最大項,求n0
分析:(1)由題意可得
bn+12
bn2
=2,由此可推得
an+2
an
=2,所以數列{an}奇數項偶數項均構成等比數列,分段可寫出{an}的通項公式;
(2)a=
2
時,{an}為等比數列,可表示出Sn,進而表示出Tn,運用基本不等式可求得數列{Tn}的最大項及相應的n值;
解答:解:(1)
bn+12
bn2
=
an+1an+2
anan+1
=
an+2
an
=2,
又∵a1=1,a2=a(a>0),
∴an=
(
2
)n-1,n為正奇數
a(
2
)n-2,n為正偶數

(2)若a=
2
,則an=(
2
)n-1
(n∈N*),則{an}為等比數列,公比為
2

所以Sn=
1×[1-(
2
)
n
]
1-
2
=
1-(
2
)n
1-
2

Tn=
17Sn-S2n
an+1
=
1
1-
2
[(
2
)n+
16
(
2
)n
-17]
1
1-
2
(8-17)=9(
2
+1)

等號當且僅當(
2
)n=
16
(
2
)n
,即n=4時取到,
n0=4.
點評:本題考查等比數列的通項公式及前n項和公式,考查基本不等式求最值,考查學生分析解決問題的能力,屬難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數列bn-1是等比數列;
(2)求數列{anbn}的前n項和Sn
(3)數列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數列{an}的通項公式;
(2)證明:對于一切正整數n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•北京模擬)已知數列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習冊答案