中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

 

如圖1,EF分別是矩形ABCD的邊ABCD的中點,GEF上的一點,將△GAB、△GCD分別沿ABCD翻折成△G1AB、△G2CD,并連接G1G2,使平面G­1AB⊥平面ABCDG1G2AD,且G1G2AD,連結BG2如圖2.

(1) 證明平面G1AB⊥平面G1ADG2

(2) 當AB = 12,BC = 25,EG = 8時,求直線BG2與平面G1ADG2成角.

 

 

 

 

 

 

 

 

 

【答案】

 解法一:

(1) ∵ 平面G1AB⊥平面ABCD,平面G1AB平面ABCD = ABADABAD平面ABCD

   ∴ AD⊥平面G1AB

   又∵AD平面G1ADG2

∴ 平面G1AB⊥平面G1ADG2 5分

(2) 過點BBHAG1于點H,連接G2H,由(1)的結論可知,BH⊥平面G1ADG2

∴ ∠BG2HBG2和平面G1ADG2所成的角

∵ 平面G1AB⊥平面ABCD,平面G1AB平面ABCD = AB

G1EABG1E平面G1AB

G1E⊥平面ABCD,故G1EEF

G1G2 < ADAD = EF

∴ 可在EF上取一點O,使EO = G1G2

又∵ G1G2ADEO

∴ 四邊形G1EOG2是矩形

由題設AB = 12,BC = 25,EG = 8,則GF = 17

G2O = G1E = 8,G2F = 17,G1G2 = EO = 10

AD⊥平面G1ABG1G2AD

G1G2⊥平面G1AB,從而G1G2G1B

,由

即直線BG2與平面G1ADG2所成的角是   7分

解法二:

(1) ∵ 平面G1AB⊥平面ABCD,平面G1AB平面ABCD = AB

G1EABG1E平面G1AB

   ∴ G1E⊥平面ABCD,從而G1EAD

   又∵ ABAD

AD⊥平面G1AB

AD平面G1ADG2

∴ 平面G1AB⊥平面G1ADG2 5分

(2) 由(1)可知,G1E⊥平面ABCD,故可以E為原點,分別以直線EBEFEG1x軸、y軸、z軸建立空間直角坐標系,由題設AB = 12,BC = 25,EG = 8,則EB = 6,EF = 25,EG1 = 8,相關各點的坐標分別是A(–6,0,0),D(–6,25,0),G1(0,0,8),B(6,0,0),所以=(0,25,0),=(6,0,8)

n =(xyz)是平面G1ADG2的一個法向量

,故可取n =(4,0,–3)

過點G2G2O⊥平面ABCD于點O,因為G2C = G2D

OC = OD,于是點Oy軸上

因為G1G2AD,所以G1G2EFG2O = G1E = 8

G2(0,m,8)(0 < m < 25),由解得m = 10

=(0,10,8)-(6,0,0)=(– 6,10,8)

BG2和平面G1ADG2所成的解是

故直線BG2與平面G1ADG2所成的角是   7分

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖1,E,F分別是矩形ABCD的邊AB,CD的中點,G是EF上的一點,將△GAB,△GCD分別沿AB,CD翻折成△G1AB,△G2CD,并連接G1G2,使得平面G1AB⊥平面ABCD,G1G2∥AD,且G1G2<AD、連接BG2,如圖2.
(Ⅰ)證明:平面G1AB⊥平面G1ADG2
(Ⅱ)當AB=12,BC=25,EG=8時,求直線BG2和平面G1ADG2所成的角.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖1,E,F分別是矩形ABCD的邊AB,CD的中點,G是EF上的一點,將△GAB,△GCD分別沿AB,CD翻折成△G1AB,△G2CD,并連接G1G2,使得平面G1AB⊥平面ABCD,G1G2∥AD,且G1G2<AD、連接BG2,如圖2.
(I)證明:平面G1AB⊥平面G1ADG2
(II)當AB=12,BC=25,EG=8時,求直線BG2和平面G1ADG2所成的角.

查看答案和解析>>

科目:高中數學 來源:湖南省高考真題 題型:解答題

如圖1,E、F分別是矩形ABCD的邊AB、CD的中點,G是EF上的一點。將△GAB、△GCB分別沿AB、CD翻折成△G1AB、△G2CD,并連結G1G2,使得平面G1AB⊥平面ABCD,G1G2∥AD,且G1G2<AD,連結BG2,如圖2,
(Ⅰ)證明平面G1AB⊥平面G1ADG2
(Ⅱ)當AB=12,BC=25,EG=8時,求直線BG2和平面G1ADG2所成的角。

查看答案和解析>>

科目:高中數學 來源:2007年湖南省高考數學試卷(理科)(解析版) 題型:解答題

如圖1,E,F分別是矩形ABCD的邊AB,CD的中點,G是EF上的一點,將△GAB,△GCD分別沿AB,CD翻折成△G1AB,△G2CD,并連接G1G2,使得平面G1AB⊥平面ABCD,G1G2∥AD,且G1G2<AD、連接BG2,如圖2.
(I)證明:平面G1AB⊥平面G1ADG2
(II)當AB=12,BC=25,EG=8時,求直線BG2和平面G1ADG2所成的角.

查看答案和解析>>

同步練習冊答案