設(shè)f(x)=ax2+bx+c(a≠0),若函數(shù)f(x+1)與f(x)的圖象關(guān)于y軸對稱.求證:f(x+
)為偶函數(shù).
證明略
方法一 (混合型分析法)
要證f(x+
)為偶函數(shù),只需證明其對稱軸為x=0.
即只需證-
-
=0.
只需證a=-b.(中途結(jié)果)
由已知,拋物線f(x+1)的對稱軸x=
-1與拋物線的對稱軸x=
關(guān)于y軸對稱.
∴
-1=-
.
于是得a=-b(中途結(jié)果).
∴f(x+
)為偶函數(shù).
方法二 (混合型分析法)
記F(x)=f(x+
),
欲證F(x)為偶函數(shù),只需證F(-x)=F(x),
即只需證f(-x+
)=f(x+
),(中途結(jié)果).
由已知,函數(shù)f(x+1)與f(x)的圖象關(guān)于y軸對稱,而函數(shù)f(x)與f(-x)的圖象也是關(guān)于y軸對稱的,
∴f(-x)=f(x+1).
于是有f (-x+
)=f [-(x-
)]
=f [(x-
)+1]=f (x+
)(中途結(jié)果).
∴f(x+
)為偶函數(shù).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| x1+x2 |
| 2 |
| 1 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 5 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com