(本小題14分)
在等差數(shù)列
中,
,
.
(1)求數(shù)列
的通項
;
(2)令
,證明:數(shù)列
為等比數(shù)列;
(3)求數(shù)列
的前
項和
.
(1)
;
(2)見解析
(3) ![]()
![]()
解析試題分析:(1)先由
,
,可建立關(guān)于a1和d的方程求出a1和d的值,從而求出通項
.
(2)再(1)的基礎(chǔ)上可求出
,再利用等比數(shù)列的定義可判斷出
為等比數(shù)列;
(3)由于
的通項為
顯然要采用錯位相減的方法求和。
(1)設數(shù)列
首項為
,公差為![]()
依題意得
,………2分
………………3分
……………4分
(2)![]()
是以
=4為首項,4為公比的等比數(shù)列!8分
(3)
……………………9分
…………………11分![]()
考點:等差數(shù)列的通項公式,等比數(shù)列的定義及通項公式及其前n項和公式,錯位相減法求和。
點評:等差數(shù)列及等比數(shù)列的定義是判斷數(shù)列是否是等差或等比數(shù)列的依據(jù),并且要注意結(jié)合通項公式的特點判斷選用何種方法求和,本題是一個等差數(shù)列與一個等比數(shù)列的積所以應采用錯位相減法求和.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)在數(shù)列
中,
,
,
.
(Ⅰ)證明數(shù)列
是等比數(shù)列;
(II)求數(shù)列
的前
項和
.
(Ⅲ)證明對任意
,不等式
成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分) 已知等差數(shù)列
滿足:
,
,
的前n項和為
.
(Ⅰ)求通項公式
及前n項和
;
(Ⅱ)令
=
(n
N*),求數(shù)列
的前n項和
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
等差數(shù)列{an}不是常數(shù)列,
=10,且
是等比數(shù)列{
}的第1,3,5項,且
.
(1)求數(shù)列{
}的第20項,(2)求數(shù)列{
}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知等比數(shù)列{an}的各項均為正數(shù),且 2a1 +3a2 =1,
=9a2a6.
(Ⅰ) 求數(shù)列{an}的通項公式;
(Ⅱ)設 bn=log3a1 +log3a2 +…+ log3an,求
的前n項和Tn;
(Ⅲ)在(Ⅱ)的條件下,求使
≥ (7? 2n)Tn恒成立的實數(shù)k 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
已知數(shù)列
的前
項和為
,
(
).
(Ⅰ)證明數(shù)列
是等比數(shù)列,求出數(shù)列
的通項公式;
(Ⅱ)設
,求數(shù)列
的前
項和
;
(Ⅲ)數(shù)列
中是否存在三項,它們可以構(gòu)成等差數(shù)列?若存在,求出一組符合條件的項;若不存在,說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com