科目:初中數學 來源:蕭紅中學(四年制) 新概念數學 八年級上(人教版) 題型:059
| |||||||||||
查看答案和解析>>
科目:初中數學 來源:初中數學 三點一測叢書 八年級數學 下 (江蘇版課標本) 江蘇版 題型:013
反比例函數y=
(k≠0)任取一點M(a,b),過M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因為b=
,故ab=k,所以S=|k|(如圖(1)).
這就是說,過雙曲線上任意一點作x軸、y軸的垂線,所得的矩形面積為|k|.這就是k的幾何意義,會給解題帶來方便.現舉例如下:
例1:如(2)圖,已知點P1(x1,y1)和P2(x2,y2)都在反比例函數y=
(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大小.
解答:
=|k|
=|k|
故
=![]()
例2:如圖(3),在y=
(x>0)的圖像上有三點A、B、C,經過三點分別向x軸引垂線,交x軸于A1、B1、C1三點,連結OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有( )
![]()
A.S1=S2=S3
B.S1<S2<S3
C.S3<S1<S2
D.S1>S2>S3
解答:∵
=
|k|=
,
=
|k|=![]()
=
|k|=![]()
S1=S2=S3,故選A.
例3:一個反比例函數在第三象限的圖像如圖(4)所示,若A是圖像任意一點,AM⊥x軸,垂足為M,O是原點,如果△AOM的面積是3,那么這個反比例函數的解析式是________.
![]()
解答:∵S△AOM=
|k|
又S△AOM=3,
∴
|k|=3,|k|=6
∴k=±6
又∵曲線在第三象限
∴k>0∴k=6
∴所以反比例函數的解析式為y=
.
根據是述意義,請你解答下題:
如圖(5),過反比例函數y=
(x>0)的圖像上任意兩點A、B分別作軸和垂線,垂足分別為C、D,連結OA、OB,設AC與OB的交點為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得
![]()
A.S1>S2
B.S1=S2
C.S1<S2
D.大小關系不能確定
查看答案和解析>>
科目:初中數學 來源: 題型:
探索勾股定理時,我們發現“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關問題,這種方法稱為面積法。請你運用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高。
(1)若BD=h,M時直線BC上的任意一點,M到AB、AC的距離分別為
。
① 若M在線段BC上,請你結合圖形①證明:
= h;
② 當點M在BC的延長線上時,
,h之間的關系為 (請直接寫出結論,不必證明)
(2)如圖②,在平面直角坐標系中有兩條直線
:y =
x + 6 ;
:y = -3x+6 若
上的一點M到
的距離是3,請你利用以上結論求解點M的坐標。
圖②
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com