為了測量校園水平地面上一棵樹的高度,數學興趣小組利用一根標桿、皮尺,設計如圖所示的測量方案.已知測量同學眼睛A、標桿頂端F、樹的頂端E在同一直線上,此同學眼睛距地面1.6米,標桿為3.1米,且BC=1米,CD=5米,請你根據所給出的數據求樹高ED.![]()
科目:初中數學 來源: 題型:解答題
已知矩形OABC的頂點O(0,0)、A(4,0)、B(4,-3).動點P從O出發,以每秒1個單位的速度,沿射線OB方向運動.設運動時間為t秒.
(1)求P點的坐標(用含t的代數式表示);
(2)如圖,以P為一頂點的正方形PQMN的邊長為2,且邊PQ⊥y軸.設正方形PQMN與矩形OABC的公共部分面積為S,當正方形PQMN與矩形OABC無公共部分時,運動停止.
①當t<4時,求S與t之間的函數關系式;
②當t>4時,設直線MQ、MN分別交矩形OABC的邊BC、AB于D、E,問:是否存在這樣的t,使得△PDE為直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
提出問題:如圖①,在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,(其中n為奇數),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關系呢?
探究發現:為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
(1)如圖②:四邊形ABCD中,點E、F是AD的3等分點,點G、H是BC的3等分點,連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關系呢?
如圖③,連接EH、BE、DH,![]()
因為△EGH與△EBH高相等,底的比是1:2,
所以S△EGH=
S△EBH
因為△EFH與△DEH高相等,底的比是1:2,
所以S△EFH=
S△DEH
所以S△EGH+S△EFH=
S△EBH +
S△DEH
即S四邊形EFHG=
S四邊形EBHD
連接BD,
因為△DBE與△ABD高相等,底的比是2:3,
所以S△DBE=
S△ABD
因為△BDH與△BCD高相等,底的比是2:3,
所以S△BDH=
S△BCD
所以S△DBE +S△BDH=
S△ABD+
S△BCD =
(S△ABD+S△BCD)
=
S四邊形ABCD
即S四邊形EBHD=
S四邊形ABCD
所以S四邊形EFHG=
S四邊形EBHD=
×
S四邊形ABCD=
S四邊形ABCD
(1)如圖④:四邊形ABCD中,點E、F是AD的5等分點中最中間2個,點G、H是BC的5等分點中最中間2個,連接EG、FH,猜想:S四邊形EFHG與S四邊形ABCD之間有什么關系呢
驗證你的猜想:![]()
(2)問題解決:如圖①,在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,連接EG、FH,(其中n為奇數)
那么S四邊形EFHG與S四邊形ABCD之間的關系為: (不必寫出求解過程)
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖①,正方形ABCD中,點A、B的坐標分別為(0,10),(8,4),點C在第一象限.動點P在正方形ABCD的邊上,從點A出發沿A?B?C?D勻速運動,同時動點Q以相同速度在x軸正半軸上運動,當P點到達D點時,兩點同時停止運動,設運動的時間為t秒.![]()
(1)當P點在邊AB上運動時,點Q的橫坐標x(長度單位)關于運動時間t(秒)的函數圖象如圖②所示,請寫出點Q開始運動時的坐標及點P運動速度;
(2)求正方形邊長及頂點C的坐標;
(3)如果點P、Q保持原速度不變,當點P沿A?B?C?D勻速運動時,OP與PQ能否相等?若能,求出所有符合條件的t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
在一個邊長為a(單位:cm)的正方形ABCD中.![]()
(1)如圖1,如果N是AD中點,F為AB中點,連接DF,CN.
①求證:DF=CN;
②連接AC.求DH:HE: EF的值;
(2)如圖2,如果點E、M分別是線段AC、CD上的動點,假設點E從點A出發,以
cm/s速度沿AC向點C運動,同時點M從點C出發,以1cm/s的速度沿CD向點D運動,運動時間為t(t>0),連結DE并延長交正方形的邊于點F,過點M作MN⊥DF于H,交AD于N.判斷命題“當點F是邊AB中點時,則點M是邊CD的三等分點”的真假,并說明理由. (4分)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com