2×2矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(1)求矩陣M.
(2)設直線l在矩陣M對應的變換作用下得到了直線m:x-y=4.求直線l的方程.
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業三十三第五章第四節練習卷(解析版) 題型:解答題
已知數列{an}的首項為a1=1,其前n項和為Sn,且對任意正整數n有n,an,Sn成等差數列.
(1)求證:數列{Sn+n+2}成等比數列.
(2)求數列{an}的通項公式.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業三十一第五章第二節練習卷(解析版) 題型:填空題
若Sn是等差數列{an}的前n項和,且S8-S3=10,則S11的值為 .
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業七十第十章第七節練習卷(解析版) 題型:選擇題
將一枚硬幣連擲5次,如果出現k次正面向上的概率等于出現k+1次正面向上的概率,那么k的值為( )
(A)0 (B)1 (C)2 (D)3
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業七十四選修4-2第一節練習卷(解析版) 題型:解答題
在平面直角坐標系中,一種線性變換對應的2×2矩陣為
.
(1)求點A(
,3)在該變換作用下的象.
(2)求圓x2+y2=1在該變換作用下的新曲線的方程.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業七十八選修4-4第二節練習卷(解析版) 題型:解答題
在平面直角坐標系xOy中,曲線C1的參數方程為
(φ為參數),曲線C2的參數方程為
(a>b>0,φ為參數),在以O為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=α與C1,C2各有一個交點.當α=0時,這兩個交點間的距離為2,當α=
時,這兩個交點重合.
(1)分別說明C1,C2是什么曲線,并求出a與b的值.
(2)設當α=
時,l與C1,C2的交點分別為A1,B1,當α=-
時,l與C1,C2的交點為A2,B2,求四邊形A1A2B2B1的面積.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業七十七選修4-4第一節練習卷(解析版) 題型:解答題
在極坐標系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-
)=
.
(1)求圓O和直線l的直角坐標方程.
(2)當θ∈(0,π)時,求直線l與圓O公共點的一個極坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com