在直角坐標系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過點P(1,0)作直線分別交射線OA、OB于A、B兩點.
(1)當AB中點為P時,求直線AB的方程;
(2)當AB中點在直線
上時,求直線AB的方程.
(1)
;(2)![]()
解析試題分析:(1)因為
分別為直線與射線
及
的交點, 所以可設
,又點
是
的中點,
所以有
即
∴A、B兩點的坐標為
, 4分
∴
, 5分
所以直線AB的方程為
,即
6分
(2)①當直線
的斜率不存在時,則
的方程為
,易知
兩點的坐標分別為
所以
的中點坐標為
,顯然不在直線
上,
即
的斜率不存在時不滿足條件. 8分
②當直線
的斜率存在時,記為
,易知
且
,則直線
的方程為![]()
分別聯立
及![]()
可求得
兩點的坐標分別為![]()
![]()
所以
的中點坐標為
.10分
又
的中點在直線
上,所以
解得![]()
所以直線
的方程為
,即
13分
考點:本題考查了直線的方程
點評:求直線方程的一般方法
(1)直接法:直接選用直線方程的其中一種形式,寫出適當的直線方程;
(2)待定系數法:先由直線滿足的一個條件設出直線方程,方程中含有一個待定系數,再由題目中給出的另一條件求出待定系數,最后將求得的系數代入所設方程,即得所求直線方程。簡而言之:設方程、求系數、代入。
科目:高中數學 來源: 題型:解答題
如圖,在正方形
中,
為坐標原點,點
的坐標為
,點
的坐標為
,分別將線段
和
十等分,分點分別記為
和
,連接
,過
作
軸的垂線與
交于點
。![]()
(Ⅰ)求證:點
都在同一條拋物線上,并求拋物線
的方程;
(Ⅱ)過點
作直線
與拋物線E交于不同的兩點
, 若
與
的面積之比為4:1,求直線
的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的左、右焦點分別是
,Q是橢圓外的動點,滿足
.點
是線段
與該橢圓的交點,點T是
的中點.![]()
(Ⅰ)設
為點
的橫坐標,證明
;
(Ⅱ)求點T的軌跡
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的對稱軸為坐標軸,焦點是(0,
),(0,
),又點![]()
在橢圓
上.
(1)求橢圓
的方程;
(2)已知直線
的斜率為
,若直線
與橢圓
交于
、
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,以坐標原點
為幾點,
軸的正半軸為極軸建立極坐標系.已知直線
上兩點
的極坐標分別為
,圓
的參數方程
(
為參數).
(Ⅰ)設
為線段
的中點,求直線
的平面直角坐標方程;
(Ⅱ)判斷直線
與圓
的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知在平面直角坐標系
中的一個橢圓,它的中心在原點,左焦點為
,右頂點為
,設點
.
(1)求該橢圓的標準方程;
(2)若
是橢圓上的動點,求線段
中點
的軌跡方程;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓![]()
的右焦點為
,直線
與
軸交于點
,若
(其中
為坐標原點).
(I)求橢圓
的方程;
(II)設
是橢圓
上的任意一點,
為圓
的任意一條直徑(
、
為直徑的兩個端點),求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
若直線
過雙曲線
的一個焦點,且與雙曲線的一條漸近線平行.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若過點
與
軸不平行的直線與雙曲線相交于不同的兩點
的垂直平分線為
,求直線
在
軸上截距的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com