(本題滿分12分)
已知
為實數(shù),
,
為
的導函數(shù).
(1)求導數(shù)
;
(2)若
,求
在
上的最大值和最小值;
(3)若
在
和
上都是遞增的,求
的取值范圍.
(1)
.
(2)
在
上的最大值為
,最小值為
.
(3)
.
【解析】本試題主要是考查了導數(shù)的幾何意義的運用和導數(shù)在研究函數(shù)最值的思想的運用,和利用單調(diào)性,逆向求解參數(shù)的取值范圍的綜合運用。
(1)主要是考查了初等函數(shù)的導數(shù)的計算。
(2)由由
,得
得到解析式,然后確定解析式后再求解導數(shù),分析函數(shù)的單調(diào)性,得到最值。
(3)如果函數(shù)在給定區(qū)間單調(diào)遞增,說明在該區(qū)間導數(shù)值恒大于等于零,分離參數(shù)的思想求解得到。
解:(1)
.
(2)
,
.
由
,得
,此時
,
,
由
,得
或
.
又
,
,
,
![]()
在
上的最大值為
,最小值為
.
(3)解法一![]()
,
依題意:
對
恒成立,即
,所以![]()
對
恒成立,即
,所以![]()
綜上:
.
解法二![]()
,![]()
的圖像是開口向上且過點
的拋物線,由條件得
,
,
,
.解得
. ![]()
的取值范圍為
.
科目:高中數(shù)學 來源: 題型:
| π | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分12分)已知數(shù)列
是首項為
,公比
的等比數(shù)列,,
設(shè)
,數(shù)列
.
(1)求數(shù)列
的通項公式;(2)求數(shù)列
的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年上海市金山區(qū)高三上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年安徽省高三10月月考理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)
(
,
為常數(shù)),且方程
有兩個實根為
.
(1)求
的解析式;
(2)證明:曲線
的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年重慶市高三第二次月考文科數(shù)學 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角
中,四邊形
是邊長為
的正方形,
,
為
上的點,且
⊥平面![]()
(Ⅰ)求證:
⊥平面![]()
(Ⅱ)求二面角
的大;
(Ⅲ)求點
到平面
的距離.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com