設(shè)
是橢圓
的左焦點(diǎn),直線
方程為
,直線
與
軸交于
點(diǎn),
、
分別為橢圓的左右頂點(diǎn),已知
,且
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)
且斜率為
的直線交橢圓于
、
兩點(diǎn),求三角形
面積.
(Ⅰ)
;(Ⅱ)三角形
面積為
.
解析試題分析:(Ⅰ)∵
,∴
,又∵
,
∴
,∴
,
,
∴橢圓的標(biāo)準(zhǔn)方程為
6分
(Ⅱ)由題知:
,
,
:
,
,
,
由
消
得:
, 9分
∴
.
點(diǎn)
到直線
的距離:
, 12分
∴
,即三角形
面積為
. 14分
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,距離,三角形面積。
點(diǎn)評:中檔題,求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),注意明確焦點(diǎn)軸和a,b,c的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題(2)在應(yīng)用韋達(dá)定理的基礎(chǔ)上,應(yīng)用弦長公式,易于進(jìn)一步計(jì)算三角形面積。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
,短軸長為4
.![]()
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)直線x=2與橢圓C交于P、Q兩點(diǎn),A、B是橢圓O上位于直線PQ兩側(cè)的動(dòng)點(diǎn),且直線AB的斜率為
.
①求四邊形APBQ面積的最大值;
②設(shè)直線PA的斜率為
,直線PB的斜率為
,判斷
+
的值是否為常數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求傾斜角是直線y=-
x+1的傾斜角的
,且分別滿足下列條件的直線方程:(1)經(jīng)過點(diǎn)(
,-1);(2)在y軸上的截距是-5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓C的方程;
(2)設(shè)
,
、
是橢圓
上關(guān)于
軸對稱的任意兩個(gè)不同的點(diǎn),連結(jié)
交橢圓
于另一點(diǎn)
,求直線
的斜率的取值范圍;
(3)在(2)的條件下,證明直線
與
軸相交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系
中,設(shè)點(diǎn)
(
),直線
:
,點(diǎn)
在直線
上移動(dòng),
是線段
與
軸的交點(diǎn), 過
、
分別作直線
、
,使
,
.![]()
(1)求動(dòng)點(diǎn)
的軌跡
的方程;
(2)在直線
上任取一點(diǎn)
做曲線
的兩條切線,設(shè)切點(diǎn)為
、
,求證:直線
恒過一定點(diǎn);
(3)對(2)求證:當(dāng)直線
的斜率存在時(shí),直線
的斜率的倒數(shù)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上.若橢圓上的點(diǎn)
到焦點(diǎn)
、
的距離之和等于4.
(1)寫出橢圓
的方程和焦點(diǎn)坐標(biāo).
(2)過點(diǎn)
的直線與橢圓交于兩點(diǎn)
、
,當(dāng)
的面積取得最大值時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
是橢圓
上的兩點(diǎn),已知向量![]()
,若
且橢圓的離心率
,短軸長為2,O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
曲線
都是以原點(diǎn)O為對稱中心、坐標(biāo)軸為對稱軸、離心率相等的橢圓.點(diǎn)M的坐標(biāo)是(0,1),線段MN是曲線
的短軸,并且是曲線
的長軸 . 直線
與曲線
交于A,D兩點(diǎn)(A在D的左側(cè)),與曲線
交于B,C兩點(diǎn)(B在C的左側(cè)).
(1)當(dāng)
=
,
時(shí),求橢圓
的方程;
(2)若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
(a>b>0),則稱以原點(diǎn)為圓心,r=
的圓為橢圓C的“知己圓”。
(Ⅰ)若橢圓過點(diǎn)(0,1),離心率e=
;求橢圓C方程及其“知己圓”的方程;
(Ⅱ)在(Ⅰ)的前提下,若過點(diǎn)(0,m)且斜率為1的直線截其“知己圓”的弦長為2,求m的值;
(Ⅲ)討論橢圓C及其“知己圓”的位置關(guān)系.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com