已知函數
.
(Ⅰ)設
,求
的最小值;
(Ⅱ)如何上下平移
的圖象,使得
的圖象有公共點且在公共點處切線相同.
(Ⅰ) 1;(Ⅱ)
的圖象向下平移1個單位后,兩函數圖象在公共點(1,0)處有相同的切線
解析試題分析:(Ⅰ)先求導,再求導數等于0的根,解導數大于0、小于0的不等式得函數的單調區間。根據函數單調性求其最值。(Ⅱ)令
,
的圖象有公共點即
有解。公共點處切線相同.因為切點為同一點只需斜率相等即可。由導數的幾何意義可知在切點處的導數就是在切點處切線的斜率,所以只需兩函數在切點處導數相等。解方程組即可求出
。
試題解析:(Ⅰ)
,則
, 2分
令
解得
, 3分
因
時,
,當
時,
, 5分
所以當
時,
達到最小,
的最小值為1. 7分
(Ⅱ)設上下平移
的圖象為c個單位的函數解析式為
.
設
的公共點為
.
依題意有:
10分
解得
,
即將
的圖象向下平移1個單位后,兩函數圖象在公共點(1,0)處有相同的切線. 13分
考點:1導數、導數的幾何意義;2利用導數研究函數性質。
科目:高中數學 來源: 題型:解答題
設函數f(x)=axn(1-x)+b(x>0),n為正整數,a,b為常數.曲線y=f(x)在(1,f(1))處的切線方程為x+y=1.
(1)求a,b的值;
(2)求函數f(x)的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
,
,其中
的函數圖象在點
處的切線平行于
軸.
(1)確定
與
的關系; (2)若
,試討論函數
的單調性;
(3)設斜率為
的直線與函數
的圖象交于兩點
(
)證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
為函數
圖象上一點,O為坐標原點,記直線
的斜率
.
(Ⅰ)若函數
在區間![]()
上存在極值,求實數m的取值范圍;
(Ⅱ)設
,若對任意
恒有
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
甲、乙兩地相距1000
,貨車從甲地勻速行駛到乙地,速度不得超過80
,已知貨車每小時的運輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的
倍,固定成本為a元.
(1)將全程運輸成本y(元)表示為速度v(
)的函數,并指出這個函數的定義域;
(2)為了使全程運輸成本最小,貨車應以多大的速度行駛?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數![]()
,其中
,
為正整數,
、
、
均為常數,曲線
在
處的切線方程為
.
(1)求
、
、
的值;
(2)求函數
的最大值;
(3)證明:對任意的
都有
.(
為自然對數的底)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知函數
,
.
(1)若
恒成立,求實數
的值;
(2)若方程
有一根為
,方程
的根為
,是否存在實數
,使
?若存在,求出所有滿足條件的
值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com