(本題滿分12分)已知函數(shù)
的圖象過點(diǎn)
,且在點(diǎn)
處的切線方程為
.
(Ⅰ)求函數(shù)
的解析式;(Ⅱ)求函數(shù)
的單調(diào)區(qū)間.
(Ⅰ)
(Ⅱ)單調(diào)增區(qū)間:
,單調(diào)減區(qū)間:![]()
解析試題分析:(Ⅰ)由
的圖象經(jīng)過
,知
,
所以
.
所以
. ……2分
由于函數(shù)
在點(diǎn)
處的切線方程是
,
∴![]()
![]()
故所求函數(shù)的解析式是
. ……6分
(Ⅱ)
.
解得
.當(dāng)
;
當(dāng)
.
故
內(nèi)是增函數(shù),在
內(nèi)是減函數(shù),
在
內(nèi)是增函數(shù). ……12分
考點(diǎn):本小題主要考查函數(shù)的求導(dǎo)、導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查學(xué)生的知識(shí)運(yùn)用能力和運(yùn)算求解能力.
點(diǎn)評(píng):寫函數(shù)的單調(diào)區(qū)間時(shí),兩個(gè)單調(diào)增區(qū)間或兩個(gè)單調(diào)減區(qū)間之間只能用逗號(hào)隔開,不能把兩個(gè)區(qū)間并起來.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)![]()
(1)若a>0,求函數(shù)
的最小值;
(2)若a是從1,2,3三個(gè)數(shù)中任取一個(gè)數(shù),b是從2,3,4,5四個(gè)數(shù)中任取一個(gè)數(shù),求f (x)>b恒成立的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)
,曲線
過點(diǎn)P(-1,2),且在點(diǎn)P處的切線恰好與直線x-3y=0垂直。
①求a,b的值;
②求該函數(shù)的單調(diào)區(qū)間和極值。
③若函數(shù)在
上是增函數(shù),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)設(shè)函數(shù)
.![]()
(Ⅰ)討論
的單調(diào)性;
(Ⅱ)已知
,若函數(shù)
的圖象總在直線
的下方,求
的取值范圍;
(Ⅲ)記
為函數(shù)
的導(dǎo)函數(shù).若
,試問:在區(qū)間
上是否存在
(![]()
)個(gè)正數(shù)
…
,使得
成立?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)
.
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)若關(guān)于
的方程
在區(qū)間
內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
設(shè)函數(shù)![]()
⑴當(dāng)
且函數(shù)
在其定義域上為增函數(shù)時(shí),求
的取值范圍;
⑵若函數(shù)
在
處取得極值,試用
表示
;
⑶在⑵的條件下,討論函數(shù)
的單調(diào)性。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知![]()
(1)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)若
在區(qū)間
上是增函數(shù),求實(shí)數(shù)
的取值范圍
;
(3)在(2)的條件下,設(shè)關(guān)于
的方程
的兩個(gè)根為
、
,若對(duì)任意
,
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com