中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知f(x)=
1
2x+1
+m
是奇函數,則f(-1)=
1
6
1
6
分析:先由奇函數的性質求出m值,再求f(-1)即可.
解答:解:因為f(x)為定義域為R的奇函數,所以f(0)=0,即
1
20+1
+m=0,
解得m=-
1
2

所以f(-1)=
1
2-1+1
-
1
2
=
1
6

故答案為:
1
6
點評:本題考查奇函數的性質及函數求值問題,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=
1
2
x+1
 (x≤0)
-(x-1)2(x>0)

(1)求函數的最大值;  
(2)求使f(x)≥-1成立的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=
1
2x+
2
,分別求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后歸納猜想一般性結論,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•武漢模擬)已知f(x)=
1
2x+1
,則f(f(0))
=(  )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知f(x)=
1
2x+
2
,分別求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后歸納猜想一般性結論,并證明你的結論.

查看答案和解析>>

同步練習冊答案