(本小題滿(mǎn)分12分)
設(shè)雙曲線
與直線
交于兩個(gè)不同的點(diǎn)
,求雙曲線
的離心率
的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知橢圓![]()
的離心率為
,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為
.
(1)求橢圓
的方程;
(2)設(shè)直線
與橢圓
交于
兩點(diǎn),且以
為直徑的圓過(guò)橢圓的右頂點(diǎn)
,
求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分9分)已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在
軸上的拋物線過(guò)點(diǎn)
.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)
作直線交拋物線于
兩點(diǎn),使得
恰好平分線段
,求直線
的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已(12分)知橢圓的中心在坐標(biāo)原點(diǎn),離心率為
,一個(gè)焦點(diǎn)是F(0,1).
(Ⅰ)求橢圓方程;
(Ⅱ)直線
過(guò)點(diǎn)F交橢圓于A、B兩點(diǎn),且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若橢圓
的離心率為
,焦點(diǎn)在
軸上,且長(zhǎng)軸長(zhǎng)為10,曲線
上的點(diǎn)與橢圓
的兩個(gè)焦點(diǎn)的距離之差的絕對(duì)值等于4.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)求曲線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)設(shè)
,在平面直角坐標(biāo)系中,已知向量
,向量
,
,動(dòng)點(diǎn)
的軌跡為E. 求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分) 已知
均在橢圓
上,直線
分別過(guò)橢圓的左、右焦點(diǎn)
當(dāng)
時(shí),有![]()
(1)求橢圓
的方程
(2)設(shè)
是橢圓
上的任一點(diǎn),
為圓
的任一條直徑,求
的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
,左右焦點(diǎn)分別為
,
(1)若
上一點(diǎn)
滿(mǎn)足
,求
的面積;
(2)直線
交
于點(diǎn)
,線段
的中點(diǎn)為
,求直線
的方程。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com