(本小題滿分14分)設(shè)函數(shù)f(x)=
x2+ex-xex.(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[-2,2]時(shí),不等式f(x)>m恒成立,求實(shí)數(shù)m的取值范圍.
(1)f(x)的單調(diào)減區(qū)間為(-∞,+∞).(2)m<2-e2時(shí),不等式f(x)>m恒成立.
解析試題分析:(I)直接求導(dǎo),根據(jù)導(dǎo)數(shù)大(于)零,解不等式可得函數(shù)的單調(diào)增(減)區(qū)間.
(1)函數(shù)f(x)的定義域?yàn)?- ∞,+∞),
∵f′(x)=x+ex-(ex+xex)=x(1-ex),
若x<0,則1-ex>0,所以f′(x)<0;
若x>0,則1-ex<0,所以f′(x)<0;
∴f(x)在(-∞,+∞)上為減函數(shù),
即f(x)的單調(diào)減區(qū)間為(-∞,+∞).
(2)由(1)知,f(x)在[-2,2]上單調(diào)遞減.
∴[f(x)]min=f(2)=2-e2,
∴m<2-e2時(shí),不等式f(x)>m恒成立.
考點(diǎn):函數(shù)恒成立問(wèn)題;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.
點(diǎn)評(píng):導(dǎo)數(shù)主要用在研究函數(shù)的單調(diào)性,極值,最值等方面.要注意極值的判斷方法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知函數(shù)
.
(1)當(dāng)
時(shí),求證:函數(shù)
在
上單調(diào)遞增;
(2)若函數(shù)
有三個(gè)零點(diǎn),求
的值;
(3)若存在
,使得
,試求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知函數(shù)
,其圖象在點(diǎn)
處的切線方程為
.
(1)求
的值;
(2)求函數(shù)
的單調(diào)區(qū)間,并求出
在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題14分)已知函數(shù)
.
設(shè)關(guān)于x的不等式
的解集為
且方程
的兩實(shí)根為
.
(1)若
,求
的關(guān)系式;
(2)若
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
在
上是增函數(shù),在
上是減函數(shù).
(1)求函數(shù)
的解析式;
(2)若
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍;
(3)是否存在實(shí)數(shù)
,使得方程
在區(qū)間
上恰有兩個(gè)相異實(shí)數(shù)根,若存在,求出
的范圍,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
設(shè)
是定義在
上的奇函數(shù),函數(shù)
與
的圖象關(guān)于
軸對(duì)稱,且當(dāng)
時(shí),
.
(I)求函數(shù)
的解析式;
(II)若對(duì)于區(qū)間
上任意的
,都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分16分)已知函數(shù)
為實(shí)常數(shù)).
(I)當(dāng)
時(shí),求函數(shù)
在
上的最小值;
(Ⅱ)若方程
在區(qū)間
上有解,求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明:![]()
(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
設(shè)函數(shù)![]()
(1)求函數(shù)
極值;
(2)當(dāng)
恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com