中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

如圖,在三棱錐中,點(diǎn)分別是棱的中點(diǎn).

(1)求證://平面
(2)若平面平面,求證:

(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.

解析試題分析:(1)這是一個(gè)證明直線(xiàn)和平面平行的問(wèn)題,考慮直線(xiàn)與平面平行的判定定理,可找面外線(xiàn)平行于面內(nèi)線(xiàn),本題容易找到,結(jié)論自然得證;(2)因?yàn)闂l件中有平面與平面垂直,故可考慮平面與平面垂直的判定定理,在一平面內(nèi)作垂直于交線(xiàn)的直線(xiàn)平行于另一平面,再得到線(xiàn)線(xiàn)垂直,再證線(xiàn)面垂直,再得線(xiàn)線(xiàn)垂直,問(wèn)題不難解決.
試題解析:(1)在中,分別是的中點(diǎn),所以
平面平面,所以平面.      6分
(2)在平面內(nèi)過(guò)點(diǎn),垂足為.因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/0a/8/185673.png" style="vertical-align:middle;" />平面,平面平面平面,所以平面,      8分
平面,所以,                  10分
平面平面
所以平面,                         12分
平面,所以.                  14分

考點(diǎn):直線(xiàn)與平面平行的判定、直線(xiàn)與平面垂直的判定,平面與平面垂直的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,平面平面是等腰直角三角形,,四邊形是直角梯形,∥AE,,分別為的中點(diǎn).

(1)求異面直線(xiàn)所成角的大小;
(2)求直線(xiàn)和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,已知的直徑,點(diǎn)上兩點(diǎn),且為弧的中點(diǎn).將沿直徑折起,使兩個(gè)半圓所在平面互相垂直(如圖2).

(Ⅰ)求證:
(Ⅱ)在弧上是否存在點(diǎn),使得平面?若存在,試指出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,矩形中,,,分別為邊上的點(diǎn),且,,將沿折起至位置(如圖2所示),連結(jié),其中.

(Ⅰ)求證:平面
(Ⅱ)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面是矩形,四條側(cè)棱長(zhǎng)均相等且于點(diǎn).

(Ⅰ)求證:;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,邊長(zhǎng)為4的正方形ABCD與矩形ABEF所在平面互相垂直,M,N分別為AE,BC的中點(diǎn),AF=3.

(I)求證:DA⊥平面ABEF;
(Ⅱ)求證:MN∥平面CDFE;
(Ⅲ)在線(xiàn)段FE上是否存在一點(diǎn)P,使得AP⊥MN? 若存在,求出FP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知三棱柱的側(cè)棱長(zhǎng)和底面邊長(zhǎng)均為2,在底面ABC內(nèi)的射影O為底面△ABC的中心,如圖所示:

(1)聯(lián)結(jié),求異面直線(xiàn)所成角的大小;
(2)聯(lián)結(jié),求三棱錐C1-BCA1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥面ABC,D、E分別是棱A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且

(Ⅰ)求證:EF∥平面BDC1
(Ⅱ)求二面角E-BC1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐S-ABCD中,底面ABCD是矩形,SA底面ABCD,SA=AD,點(diǎn)M是SD的中點(diǎn),ANSC且交SC于點(diǎn)N.

(Ⅰ)求證:SB∥平面ACM;
(Ⅱ)求證:平面SAC平面AMN.

查看答案和解析>>

同步練習(xí)冊(cè)答案