中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知數列{an}和{bn}滿足:a1λan+1ann-4,bn=(-1)n(an-3n+21),其中λ為實數,n為正整數.
(1)對任意實數λ,證明:數列{an}不是等比數列;
(2)試判斷數列{bn}是否為等比數列,并證明你的結論.

(1)見解析(2)見解析

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知數列中,
(1)求
(2)求證:是等比數列,并求的通項公式
(3)數列滿足,數列的前n項和為,若不等式對一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}的前n項和Sn,求通項an.
(1)Sn=3n-1;
(2)Sn=n2+3n+1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}的前n項和為Sn,且Sn=4an-3(n∈N*).
(1)證明:數列{an}是等比數列;
(2)若數列{bn}滿足bn+1=an+bn(n∈N*),且b1=2,求數列{bn}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=(x-1)2g(x)=4(x-1),數列{an}是各項均不為0的等差數列,其前n項和為Sn,點(an+1,S2n-1)在函數f(x)的圖象上;數列{bn}滿足b1=2,bn≠1,且(bnbn+1g(bn)=f(bn)(n∈N).
(1)求an并證明數列{bn-1}是等比數列;
(2)若數列{cn}滿足cn,證明:c1c2c3+…+cn<3.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在數列{an}中,a1=1,{an}的前n項和Sn滿足2Snan+1.
(1)求數列{an}的通項公式;
(2)若存在n∈N*,使得λ,求實數λ的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等比數列{an}滿足:|a2a3|=10,a1a2a3=125.
(1)求數列{an}的通項公式;
(2)是否存在正整數m,使得≥1?若存在,求m的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

等比數列的前項和,已知成等差數列.
(1)求數列的公比和通項
(2)若是遞增數列,令,求.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的各項均是正數,其前項和為,滿足.
(I)求數列的通項公式;
(II)設數列的前項和為,求證:.

查看答案和解析>>

同步練習冊答案