中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

在某種產品表面進行腐蝕性刻線實驗,得到腐蝕深度y與腐蝕時間x之間相應的一組觀察值,如下表:

x/s
5
10
15
20
30
40
50
60
70
90
120
y/μm
6
10
10
13
16
17
19
23
25
29
46
用散點圖及相關系數兩種方法判斷x與y的相關性.

作出如圖所示的散點圖.

腐蝕深度y與腐蝕時間x之間有很強的線性相關關系

解析解:(1)作出如圖所示的散點圖.

從散點圖可看出腐蝕深度y(μm)與腐蝕時間x(s)之間存在著較強的線性相關關系.
(2)相關系數r=
≈0.98,
顯然|r|>0.75.所以,腐蝕深度y與腐蝕時間x之間有很強的線性相關關系.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某普通高中共有教師人,分為三個批次參加研修培訓,在三個批次中男、女教師人數如下表所示:

 
第一批次
第二批次
第三批次
女教師



男教師



 
已知在全體教師中隨機抽取1名,抽到第二、三批次中女教師的概率分別是
(1)求的值;
(2)為了調查研修效果,現從三個批次中按的比例抽取教師進行問卷調查,三個批次被選取的人數分別是多少?
(3)若從(2)中選取的教師中隨機選出兩名教師進行訪談,求參加訪談的兩名教師“分別來自兩個批次”的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為預防X病毒爆發,某生物技術公司研制出一種X病毒疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于90%,則認為測試沒有通過),公司選定2000個樣本分成三組,測試結果如下表:

分組



疫苗有效
673


疫苗無效
77
90

 
已知在全體樣本中隨機抽取1個,抽到組疫苗有效的概率是0.33.
(1)現用分層抽樣的方法在全體樣本中抽取360個測試結果,應在組抽取樣本多少個?
(2)已知,求通過測試的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某學校為了選拔學生參加“XX市中學生知識競賽”,先在本校進行選拔測試(滿分150分),若該校有100名學生參加選拔測試,并根據選拔測試成績作出如圖所示的頻率分布直方圖.
(1)根據頻率分布直方圖,估算這100名學生參加選拔測試的平均成績;
(2)該校推薦選拔測試成績在110以上的學生代表學校參加市知識競賽,為了了解情況,在該校推薦參加市知識競賽的學生中隨機抽取2人,求選取的兩人的選拔成績在頻率分布直方圖中處于不同組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某種水果的單個質量在500g以上視為特等品.隨機抽取1000個該水果,結果有50個特等品.將這50個水果的質量數據分組,得到下邊的頻率分布表.

(1)估計該水果的質量不少于560g的概率;
(2)若在某批水果的檢測中,發現有15個特等品,據此估計該批水果中沒有達到特等品的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某企業有兩個分廠生產某種零件,按規定內徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優質品.從兩個分廠生產的零件中各抽出了500件,量其內徑尺寸,得結果如下表:
甲廠:

分組
 
[29.86,29.90)
 
[29.90,29.94)
 
[29.94,29.98)
 
[29.9830.02),
 
[30.02,30.06)
 
[30.06,30.10)
 
[30.10,30.14)
 
頻數
 
12
 
63
 
86
 
182
 
92
 
61
 
4
 
乙廠:
分組
 
[29.86,29.90)
 
[29.90,29.94)
 
[29.94,29.98)
 
[29.9830.02),
 
[30.02,30.06)
 
[30.06,30.10)
 
[30.10,30.14)
 
頻數
 
29
 
71
 
85
 
159
 
76
 
62
 
18
 
 
(1)試分別估計兩個分廠生產的零件的優質品率;
(2)由以上統計數據填下面2×2列聯表,并問是否有99%的把握認為“兩個分廠生產的零件的質量有差異”?
 
 
甲廠
 
乙廠
 
合計
 
優質品
 
 
 
 
 
 
 
非優質品
 
 
 
 
 
 
 
合 計
 
 
 
 
 
 
 
附:
P(χ2≥x0)
 
0.05
 
0.01
 
x0
 
3.841
 
6.635
 
 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某市為“市中學生知識競賽”進行選拔性測試,且規定:成績大于或等于90分的有參賽資格,90分以下(不包括90分)的被淘汰.若有500人參加測試,學生成績的頻率分布直方圖如圖.

(1)求獲得參賽資格的人數;
(2)根據頻率直方圖,估算這500名學生測試的平均成績;
(3)若知識競賽分初賽和復賽,在初賽中每人最多有5次選題答題的機會,累計答對3題或答錯3題即終止,答對3題者方可參加復賽.已知參賽者甲答對每一個問題的概率都相同,并且相互之間沒有影響.已知他連續兩次答錯的概率為,求甲在初賽中答題個數的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某地區有小學21所,中學14所,大學7所,現采用分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查.
(1)求應從小學、中學、大學中分別抽取的學校數目;
(2)若從抽取的6所學校中隨機抽取2所學校做進一步數據分析,
①列出所有可能的抽取結果;
②求抽取的2所學校均為小學的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

衡水某中學對高二甲、乙兩個同類班級進行“加強‘語文閱讀理解’訓練對提高‘數學應用題’得分率作用”的試驗,其中甲班為試驗班(加強語文閱讀理解訓練),乙班為對比班(常規教學,無額外訓練),在試驗前的測試中,甲、乙兩班學生在數學應用題上的得分率基本一致,試驗結束后,統計幾次數學應用題測試的平均成績(均取整數)如下表所示:

 
60分
以下
61~
70分
71~
80分
81~
90分
91~
100分
甲班
(人數)
3
6
11
18
12
乙班
(人數)
4
8
13
15
10
現規定平均成績在80分以上(不含80分)的為優秀.
(1)試分別估計兩個班級的優秀率.
(2)由以上統計數據填寫下面2×2列聯表,并判斷“加強‘語文閱讀理解’訓練對提高‘數學應用題’得分率”是否有幫助?
 
優秀人數
非優秀人數
總計
甲班
 
 
 
乙班
 
 
 
總計
 
 
 
參考公式及數據:K2=,

查看答案和解析>>

同步練習冊答案