已知函數(shù)
對于任意的
滿足
.
(1)求
的值;
(2)求證:
為偶函數(shù);
(3)若
在
上是增函數(shù),解不等式![]()
(1)
。
(2)令
,得
,可得
。
(3)不等式的解集為:[-1,0)∪(0,2]∪[3,5)∪(5,6]。
解析試題分析:(1)解:∵對于任意的
滿足![]()
∴令
,得到:![]()
令
,得到:
4分
(2)證明:有題可知,令
,得![]()
∵
∴
∴
為偶函數(shù); 8分
(3)由(2) 函數(shù)
是定義在非零實數(shù)集上的偶函數(shù).
∴不等式
可化為![]()
∴
.即:
且![]()
在坐標(biāo)系內(nèi),如圖函數(shù)
圖象與
兩直線.
由圖可得x∈[-1,0)∪(0,2]∪[3,5)∪(5,6]
故不等式的解集為:[-1,0)∪(0,2]∪[3,5)∪(5,6] 12分![]()
考點:抽象函數(shù),函數(shù)的奇偶性,函數(shù)的圖象,抽象不等式。
點評:中檔題,抽象函數(shù)問題,往往利用“賦值法”。抽象不等式問題,往往要利用函數(shù)的單調(diào)性,結(jié)合函數(shù)的圖象分析得解。
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在半徑為
、圓心角為
的扇形的弧上任取一點
,作扇形的內(nèi)接矩形
,使點
在
上,點
在
上,設(shè)矩形
的面積為
,![]()
(Ⅰ)按下列要求求出函數(shù)關(guān)系式:
①設(shè)
,將
表示成
的函數(shù)關(guān)系式;
②設(shè)
,將
表示成
的函數(shù)關(guān)系式;
(Ⅱ)請你選用(1)中的一個函數(shù)關(guān)系式,求出
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
在一個周期內(nèi)的部分對應(yīng)值如下表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
和點
,過點
作曲線
的兩條切線
、
,切點分別為
、
.
(Ⅰ)設(shè)
,試求函數(shù)
的表達(dá)式;
(Ⅱ)是否存在
,使得
、
與
三點共線.若存在,求出
的值;若不存在,請說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對任意的正整數(shù)
,在區(qū)間
內(nèi)總存在
個實數(shù)
,
,使得不等式
成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
定義域為
,且
.設(shè)點
是函數(shù)圖像上的任意一點,過點
分別作直線
和
軸的垂線,垂足分別為
.![]()
(1)寫出
的單調(diào)遞減區(qū)間(不必證明);
(2)問:
是否為定值?若是,則求出該定值,若不是,則說明理由;
(3)設(shè)
為坐標(biāo)原點,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
隨著機(jī)構(gòu)改革工作的深入進(jìn)行,各單位要減員增效。有一家公司現(xiàn)有職員
人,(
,且
為偶數(shù)),每人每年可創(chuàng)利
萬元。據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年可多創(chuàng)利
萬元,但公司需支付下崗職員每人每年
萬元的生活費,并且該公司正常運轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有員工的
,為獲得最大的經(jīng)濟(jì)效益,該公司應(yīng)裁員多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元至1000萬元的投資收益.為加快開發(fā)進(jìn)程,特制定了產(chǎn)品研制的獎勵方案:獎金
(萬元)隨投資收益
(萬元)的增加而增加,但獎金總數(shù)不超過9萬元,同時獎金不超過投資收益的20%.
現(xiàn)給出兩個獎勵模型:①
;②
.
試分析這兩個函數(shù)模型是否符合公司要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于在區(qū)間 [ m,n ] 上有意義的兩個函數(shù)
與
,如果對任意
,均有
,則稱
與
在 [ m,n ] 上是友好的,否則稱
與
在 [ m,n ]是不友好的.現(xiàn)有兩個函數(shù)
與
(a > 0且
),給定區(qū)間
.
(1)若
與
在給定區(qū)間
上都有意義,求a的取值范圍;
(2)討論
與
在給定區(qū)間
上是否友好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x (單位:元/千克)滿足關(guān)系式y(tǒng)=
+10(x-6)2,(其中3<x<6,
為常數(shù),)已知銷售價格為5元/千克時,每日可售出該商品11千克。
(I)求
的值;
(II)若該商品的成品為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com