(本小題滿分12分)設(shè)雙曲線
的兩個(gè)焦點(diǎn)分別為
,離心率為2.
(Ⅰ)求此雙曲線的漸近線
的方程;
(Ⅱ)若
、
分別為
上的點(diǎn),且
,求線段
的中點(diǎn)
的軌跡方程,并說(shuō)明軌跡是什么曲線;
(Ⅰ)
,漸近線方程為
;(Ⅱ)![]()
則M的軌跡是中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為
,短軸長(zhǎng)為
的橢圓。
解析試題分析:(Ⅰ)利用離心率為2,結(jié)合c2=a2+3,可求a,c的值,從而可求雙曲線方程,即可求得漸近線方程;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)M(x,y),利用2|AB|=5|F1F2|,建立方程,根據(jù)A、B分別為l1、l2上的點(diǎn),化簡(jiǎn)可得軌跡方程及對(duì)應(yīng)的曲線.
解:(Ⅰ)![]()
![]()
,漸近線方程為![]()
(Ⅱ)設(shè)
,AB的中點(diǎn)![]()
![]()
![]()
則M的軌跡是中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為
,短軸長(zhǎng)為
的橢圓。
考點(diǎn):本試題主要考查了軌跡方程的求解,考查雙曲線的幾何性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題。
點(diǎn)評(píng):解決該試題的關(guān)鍵是能理解雙曲線的性質(zhì)熟練的得到a,b,的值,注意焦點(diǎn)位置對(duì)于漸近線的影響。同時(shí)能利用坐標(biāo)關(guān)系式得到軌跡方程。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
分別是橢圓
:
+
=1(![]()
)的左、右焦點(diǎn),
是橢圓
的上頂點(diǎn),
是直線
與橢圓
的另一個(gè)交點(diǎn),![]()
![]()
=60°.
(1)求橢圓
的離心率;
(2)已知△![]()
的面積為40
,求a, b 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知橢圓
,過(guò)點(diǎn)(m,0)作圓
的切線
交橢圓G于A,B兩點(diǎn).
(1)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(2)將
表示為m的函數(shù),并求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)(理科)已知橢圓
,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)![]()
的直線
交橢圓于
兩點(diǎn),交直線
于點(diǎn)
,且
,
,
求證:
為定值,并計(jì)算出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分) 已知拋物線
與直線
相交于
兩點(diǎn).
(1)求證:以
為直徑的圓過(guò)坐標(biāo)系的原點(diǎn)
;(2)當(dāng)
的面積等于
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)如圖,橢圓
:
的左焦點(diǎn)為
,右焦點(diǎn)為
,離心率
.過(guò)
的直線交橢圓于
兩點(diǎn),且△
的周長(zhǎng)為
.![]()
(Ⅰ)求橢圓
的方程.
(Ⅱ)設(shè)動(dòng)直線
:
與橢圓
有且只有一個(gè)公共點(diǎn)
,且與直線
相交于點(diǎn)
.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)
,使得以
為直徑的圓恒過(guò)點(diǎn)
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓![]()
上的動(dòng)點(diǎn)到焦點(diǎn)距離的最小值為
,以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線
相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過(guò)點(diǎn)
(2,0)的直線與橢圓
相交于
兩點(diǎn),
為橢圓上一點(diǎn), 且滿足
(
為坐標(biāo)原點(diǎn)),當(dāng)
時(shí),求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線C:2x2-y2=2與點(diǎn)P(1,2).求過(guò)點(diǎn)P(1,2)的直線l的斜率k的取值范圍,使l與C只有一個(gè)交點(diǎn);
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com