中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知f(x)=x+-3,x∈[1,2].
(1)當b=2時,求f(x)的值域;
(2)若b為正實數,f(x)的最大值為M,最小值為m,且滿足M-m≥4,求b的取值范圍.

(1)2 -3,0](2)[10,+∞)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知橢圓的左焦點為,左、右頂點分別為,過點且傾斜角為的直線交橢圓于兩點,橢圓的離心率為,
(1)求橢圓的方程;
(2)若是橢圓上不同兩點,軸,圓過點,且橢圓上任意一點都不在圓內,則稱圓為該橢圓的內切圓.問橢圓是否存在過點的內切圓?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求函數的最小正周期和值域;
(2)若,且,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某通訊公司需要在三角形地帶區域內建造甲、乙兩種通信信號加強中轉站,甲中轉站建在區域內,乙中轉站建在區域內.分界線固定,且=百米,邊界線始終過點,邊界線滿足
()百米,百米.

(1)試將表示成的函數,并求出函數的解析式;
(2)當取何值時?整個中轉站的占地面積最小,并求出其面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖象分別與軸相交于兩點,且向量分別是與軸正半軸同方向的單位向量),又函數
(1)求的值;
(2)若不等式的解集為,求的值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義在上的函數,如果滿足:對任意,存在常數,都有 成立,則稱上的有界函數,其中稱為函數的一個上界.已知函數
(1)若函數為奇函數,求實數的值;
(2)在(1)的條件下,求函數在區間上的所有上界構成的集合;
(3)若函數上是以3為上界的有界函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知9x-10×3x+9≤0,求函數y=-4+2的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2bxc(bc∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當x≥0時,f(x)≤(xc)2
(2)若對滿足題設條件的任意bc,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2+ax+b的兩個零點是-2和3,解不等式bf(ax)>0;

查看答案和解析>>

同步練習冊答案