已知橢圓C:
的離心率與等軸雙曲線的離心率互為倒數(shù),直線
與以原點(diǎn)為圓心,以橢圓C的短半軸長為半徑的圓相切。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M是橢圓的上頂點(diǎn),過點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點(diǎn)(―1,―1)
(Ⅰ)
;(Ⅱ)詳見解析
解析試題分析:(I)由等軸雙曲線的離心率為
,可得橢圓的離心率
,因?yàn)橹本
,與以原點(diǎn)為圓心,以橢圓C的短半軸長為半徑的圓相切,利用點(diǎn)到直線的距離公式和直線與圓相切的性質(zhì)可得,
,再利用
即可得出;(II)分直線AB的斜率不存在與存在兩種情況討論,①不存在時比較簡單;②斜率存在時,設(shè)直線AB的方程為
,由橢圓
與橢圓的方程聯(lián)立,利用根與系數(shù)的關(guān)系及斜率公式,再利用
即可證明
試題解析:(Ⅰ)由題意得
,
2分
即
,解得
4分
故橢圓C的方程為
5分
(Ⅱ)當(dāng)直線AB的斜率不存在時,設(shè)A
,則B
,由k1+k2=2得
,得
7分
當(dāng)直線AB的斜率存在時,設(shè)AB的方程為y=kx+b(
),
,![]()
得
,
9分![]()
![]()
即![]()
由
,![]()
11分
即![]()
故直線AB過定點(diǎn)(―1,―1) 13分
考點(diǎn):直線與圓錐曲線的關(guān)系;橢圓的標(biāo)準(zhǔn)方程
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓
:
的離心率為
,點(diǎn)
為其下焦點(diǎn),點(diǎn)
為坐標(biāo)原點(diǎn),過
的直線
:
(其中
)與橢圓
相交于
兩點(diǎn),且滿足:
.![]()
(1)試用
表示
;
(2)求
的最大值;
(3)若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
在拋物線
:
上.
(1)若
的三個頂點(diǎn)都在拋物線
上,記三邊
,
,
所在直線的斜率分別為
,
,
,求
的值;
(2)若四邊形
的四個頂點(diǎn)都在拋物線
上,記四邊
,
,
,
所在直線的斜率分別為
,
,
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
(
)的右焦點(diǎn)為
,離心率為
.
(Ⅰ)若
,求橢圓的方程;
(Ⅱ)設(shè)直線
與橢圓相交于
,
兩點(diǎn),
分別為線段
的中點(diǎn). 若坐標(biāo)原點(diǎn)
在以
為直徑的圓上,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
的離心率為
,過橢圓
右焦點(diǎn)
的直線
與橢圓
交于點(diǎn)
(點(diǎn)
在第一象限).
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知
為橢圓
的左頂點(diǎn),平行于
的直線
與橢圓相交于
兩點(diǎn).判斷直線
是否關(guān)于直線
對稱,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
、
為橢圓
的左、右焦點(diǎn),且點(diǎn)
在橢圓
上.
(1)求橢圓
的方程;
(2)過
的直線
交橢圓
于
兩點(diǎn),則
的內(nèi)切圓的面積是否存在最大值?
若存在其最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓
,稱圓心在坐標(biāo)原點(diǎn)O,半徑為
的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點(diǎn)分別是
.
(1)若橢圓C上一動點(diǎn)
滿足
,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點(diǎn)
作直線l與橢圓C只有一個交點(diǎn),且截橢圓C的“伴隨圓”所得弦長為
,求P點(diǎn)的坐標(biāo);
(3)已知
,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過兩點(diǎn)
的直線的最短距離
.若存在,求出a,b的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
.![]()
(1)橢圓
的短軸端點(diǎn)分別為
(如圖),直線
分別與橢圓
交于
兩點(diǎn),其中點(diǎn)
滿足
,且
.
①證明直線
與
軸交點(diǎn)的位置與
無關(guān);
②若∆
面積是∆
面積的5倍,求
的值;
(2)若圓
:
.
是過點(diǎn)
的兩條互相垂直的直線,其中
交圓
于
、
兩點(diǎn),
交橢圓
于另一點(diǎn)
.求
面積取最大值時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知定點(diǎn)
、
,動點(diǎn)N滿足
(O為坐標(biāo)原點(diǎn)),
,
,
,求點(diǎn)P的軌跡方程.![]()
(2)如圖,已知橢圓
的上、下頂點(diǎn)分別為
,點(diǎn)
在橢圓上,且異于點(diǎn)
,直線
與直線
分別交于點(diǎn)
,![]()
(。┰O(shè)直線
的斜率分別為
、
,求證:
為定值;
(ⅱ)當(dāng)點(diǎn)
運(yùn)動時,以
為直徑的圓是否經(jīng)過定點(diǎn)?請證明你的結(jié)論.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com