如圖,已知橢圓
:
的離心率為
,點(diǎn)
為其下焦點(diǎn),點(diǎn)
為坐標(biāo)原點(diǎn),過
的直線
:
(其中
)與橢圓
相交于
兩點(diǎn),且滿足:
.![]()
(1)試用
表示
;
(2)求
的最大值;
(3)若
,求
的取值范圍.
(1)
;(2)離心率
的最大值為
;(3)
的取值范圍是
.
解析試題分析:(1)設(shè)
,聯(lián)立橢圓與直線的方程
,消去
得到
,應(yīng)用二次方程根與系數(shù)的關(guān)系得到
,
,然后計(jì)算得
,將其代入
化簡即可得到
;(2)利用(1)中得到的
,即
(注意
),結(jié)合
,化簡求解即可得出
的最大值;(3)利用
與
先求出
的取值范圍,最后根據(jù)(1)中
,求出
的取值范圍即可.
試題解析:(1)聯(lián)立方程
消去
,化簡得
1分
設(shè)
,則有
,
3分![]()
∵![]()
∴
5分
∴
即
6分
(2)由(1)知
∴
,∴
8分
∴
∴離心率
的最大值為
10分
(3)∵
∴
∴
12分
解得
∴
即![]()
∴
的取值范圍是
14分.
考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程及其性質(zhì);2.二次方程根與系數(shù)的關(guān)系.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
的焦點(diǎn)為雙曲線
的一個(gè)焦點(diǎn),且兩條曲線都經(jīng)過點(diǎn)
.
(1)求這兩條曲線的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)
在拋物線上,且它與雙曲線的左,右焦點(diǎn)構(gòu)成的三角形的面積為4,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓![]()
過點(diǎn)
,離心率為
.
(1)求橢圓
的方程;
(2)求過點(diǎn)
且斜率為
的直線被橢圓所截得線段的中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知?jiǎng)又本
與橢圓![]()
交于![]()
、![]()
兩不同點(diǎn),且△
的面積
=
,其中
為坐標(biāo)原點(diǎn).
(1)證明
和
均為定值;
(2)設(shè)線段
的中點(diǎn)為
,求
的最大值;
(3)橢圓
上是否存在點(diǎn)
,使得
?若存在,判斷△
的形狀;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的左、右焦點(diǎn)分別為
,離心率為
,P是橢圓上一點(diǎn),且
面積的最大值等于2.
(1)求橢圓的方程;
(2)直線y=2上是否存在點(diǎn)Q,使得從該點(diǎn)向橢圓所引的兩條切線相互垂直?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱軸是
軸的拋物線經(jīng)過點(diǎn)
.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)直線
過定點(diǎn)
,斜率為
,當(dāng)
為何值時(shí),直線與拋物線有公共點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
上的點(diǎn)
到左右兩焦點(diǎn)
的距離之和為
,離心率為
.
(1)求橢圓的方程;
(2)過右焦點(diǎn)
的直線
交橢圓于
兩點(diǎn),若
軸上一點(diǎn)
滿足
,求直線
的斜率
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,已知
分別是橢圓
的左、右焦點(diǎn),橢圓
與拋物線
有一個(gè)公共的焦點(diǎn),且過點(diǎn)
.![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)點(diǎn)
是橢圓
在第一象限上的任一點(diǎn),連接
,過
點(diǎn)作斜率為
的直線
,使得
與橢圓
有且只有一個(gè)公共點(diǎn),設(shè)直線
的斜率分別為
,
,試證明
為定值,并求出這個(gè)定值;
(III)在第(Ⅱ)問的條件下,作
,設(shè)
交
于點(diǎn)
,
證明:當(dāng)點(diǎn)
在橢圓上移動(dòng)時(shí),點(diǎn)
在某定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
的離心率與等軸雙曲線的離心率互為倒數(shù),直線
與以原點(diǎn)為圓心,以橢圓C的短半軸長為半徑的圓相切。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M是橢圓的上頂點(diǎn),過點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點(diǎn)(―1,―1)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com