如圖,在
軸上方有一段曲線弧
,其端點(diǎn)
、
在
軸上(但不屬于
),對(duì)
上任一點(diǎn)
及點(diǎn)
,
,滿足:
.直線
,
分別交直線
于
,
兩點(diǎn).![]()
(Ⅰ)求曲線弧
的方程;
(Ⅱ)求
的最小值(用
表示);
(I)
.(II)
.
解析試題分析:(I)由橢圓的定義,曲線
是以
,
為焦點(diǎn)的半橢圓,
利用
的關(guān)系,得到
的方程為
.
要特別注意有限制
.
(II)設(shè)
并代入橢圓方程得到
,根據(jù)
,
,可以得到直線
的方程,進(jìn)一步令可
得
,
的縱坐標(biāo)分別,將
用縱坐標(biāo)表出,應(yīng)用“基本不等式”,得到其最小值.
本解答即體現(xiàn)此類問(wèn)題的一般解法“設(shè)而不求”,又反映數(shù)學(xué)知識(shí)的靈活應(yīng)用.
試題解析:(I)由橢圓的定義,曲線
是以
,
為焦點(diǎn)的半橢圓,
.
∴
的方程為
. 4分
(注:不寫(xiě)區(qū)間“
”扣1分)
(II)由(I)知,曲線
的方程為
,設(shè)
,
則有
, 即
①
又
,
,從而直線
的方程為
AP:
; BP:
6分
令
得
,
的縱坐標(biāo)分別為
;
.
∴
② 將①代入②, 得
. 8分
∴
.
當(dāng)且僅當(dāng)
,即
時(shí),取等號(hào).
即
的最小值是
. 12分
考點(diǎn):橢圓的定義,直線與橢圓的位置關(guān)系,基本不等式的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,橢圓
上的點(diǎn)到焦點(diǎn)距離的最大值為
,最小值為
.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線
與橢圓交于不同的兩點(diǎn)
、
,且線段
的垂直平分線過(guò)定點(diǎn)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:
+
=1(a>b>0)的左、右焦點(diǎn),A是橢圓C的頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn),∠F1AF2=60°![]()
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40
,求a,b的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系
上取兩個(gè)定點(diǎn)
,再取兩個(gè)動(dòng)點(diǎn)
且
.
(I)求直線
與
交點(diǎn)的軌跡
的方程;
(II)已知
,設(shè)直線:
與(I)中的軌跡
交于
、
兩點(diǎn),直線
、
的傾斜角分別為
且
,求證:直線過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系
中,已知圓
和圓
.
(1)若直線
過(guò)點(diǎn)
,且被圓
截得的弦長(zhǎng)為
,求直線
的方程;
(2)設(shè)
為平面上的點(diǎn),滿足:存在過(guò)點(diǎn)
的無(wú)窮多對(duì)互相垂直的直線
和
,它們分別與圓
和圓
相交,且直線
被圓
截得的弦長(zhǎng)與直線
被圓
截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
:
,過(guò)點(diǎn)
作圓
的切線
交橢圓
于A,B兩點(diǎn)。
(1)求橢圓
的焦點(diǎn)坐標(biāo)和離心率;
(2)求
的取值范圍;
(3)將
表示為
的函數(shù),并求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線
的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,以F1,F2為焦點(diǎn)的橢圓C過(guò)點(diǎn)
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)![]()
,過(guò)點(diǎn)F2作直線
與橢圓C交于A,B兩點(diǎn),且
,若
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
知橢圓
的離心率為
,定點(diǎn)
,橢圓短軸的端點(diǎn)是
,且
.
(1)求橢圓
的方程;
(2)設(shè)過(guò)點(diǎn)
且斜率不為0的直線交橢圓
于
兩點(diǎn).試問(wèn)
軸上是否存在異于
的定點(diǎn)
,使
平分
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓
的左焦點(diǎn)為
,離心率為
,過(guò)點(diǎn)
且與
軸垂直的直線被橢圓截得的線段長(zhǎng)為
.
(1) 求橢圓方程.
(2) 過(guò)點(diǎn)
的直線
與橢圓交于不同的兩點(diǎn)
,當(dāng)
面積最大時(shí),求
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com