中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數為實常數).
(1)若函數圖像上動點到定點的距離的最小值為,求實數的值;
(2)若函數在區間上是增函數,試用函數單調性的定義求實數的取值范圍;
(3)設,若不等式有解,求的取值范圍.

(1);(2);(3)當時,
時,

解析試題分析:(1)點是函數上的點,因此我們設點坐標為,這樣可把表示為關于的函數,而其最小值為2,利用不等式的知識可求出,即點坐標,用基本不等式時注意不等式成立的條件;(2)題目已經要求我們用函數單調性的定義求解,因此我們直接用定義,設,則函數在上單調遞增,說明恒成立,變形后可得恒成立,即小于的最小值(如有最小值的話),事實上,故;(3)不等式有解,則,因此大于或等于的最小值,下面我們要求的最小值,而,可以看作是關于的二次函數,用換元法變為求二次函數在給定區間上的最小值,注意分類討論,分類的依據是二次函數的對稱軸與給定區間的關系.
試題解析:(1)設,則
                  (1分)
,               (1分)
時,解得;當時,解得.     (1分)
所以,.                   (1分)
(只得到一個解,本小題得3分)
(2)由題意,任取,且
, (2分)
因為,所以,即,       (2分)
,得,所以
所以,的取值范圍是.                       (2分)
(3)由,得
因為,所以,                  (2分)
,則,所以,令
于是,要使原不等式在有解,當且僅當). (1分)
因為,所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2bxc(bc∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當x≥0時,f(x)≤(xc)2
(2)若對滿足題設條件的任意bc,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)當,函數有且僅有一個零點,且時,求的值;
(Ⅱ)若函數在區間上為單調函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(其中是實數常數,
(1)若,函數的圖像關于點(—1,3)成中心對稱,求的值;
(2)若函數滿足條件(1),且對任意,總有,求的取值范圍;
(3)若b=0,函數是奇函數,,且對任意時,不等式恒成立,求負實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義:對于函數,若在定義域內存在實數,滿足,則稱為“局部奇函數”.
(1)已知二次函數,試判斷是否為定義域上的“局部奇函數”?若是,求出滿足的值;若不是,請說明理由;
(2)若是定義在區間上的“局部奇函數”,求實數的取值范圍;
(3)若為定義域上的“局部奇函數”,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3+ax-2,(aR).
(l)若f(x)在區間(1,+)上是增函數,求實數a的取值范圍;
(2)若,且f(x0)=3,求x0的值;
(3)若,且在R上是減函數,求實數a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數  ().
(1)若為偶函數,求實數的值;
(2)已知,若對任意都有恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數為常數
(1)求的最小值的解析式;
(2)在(1)中,是否存在最小的整數,使得對于任意均成立,若存在,求出 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數是奇函數,且.
(1)求實數的值;
(2)判斷函數上的單調性,并用定義加以證明.

查看答案和解析>>