中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
以橢圓
x2
16
+
y2
4
=1
內的點M(1,1)為中點的弦所在直線方程為
x+4y-5=0
x+4y-5=0
分析:設點M(1,1)為中點的弦所在直線與橢圓相交于點A(x1,y1),B(x2,y2).利用“點差法”即可得出直線的斜率,再利用點斜式即可得出.
解答:解:設點M(1,1)為中點的弦所在直線與橢圓相交于點A(x1,y1),B(x2,y2).
x
2
1
16
+
y
2
1
4
=1
x
2
2
16
+
y
2
2
4
=1

相減得
(x1+y1)(x1-y1)
16
+
(x2+y2)(x2-y2)
4
=0,
1=
x1+x2
2
1=
y1+y2
2
kAB=
y1-y2
x1-x2
..
2
16
+
2kAB
4
=0
,解得kAB=-
1
4

故所求的直線方程為y-1=-
1
4
(x-1)
,化為x+4y-5=0.
故答案為x+4y-5=0.
點評:本題考查了直線與橢圓相交的中點弦問題和“點差法”等基礎知識與基本方法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

以雙曲線-3x2+y2=12的焦點為頂點,頂點為焦點的橢圓的方程是(  )
A、
x2
16
+
y2
12
=1
B、
x2
16
+
y2
4
=1
C、
x2
12
+
y2
16
=1
D、
x2
4
+
y2
16
=1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓以坐標原點為中心,坐標軸為對稱軸,且橢圓以拋物線y2=16x的焦點為其一個焦點,以雙曲線
x2
16
-
y2
9
=1
的焦點為頂點.
(1)求橢圓的標準方程;
(2)已知點A(-1,0),B(1,0),且C,D分別為橢圓的上頂點和右頂點,點P是線段CD上的動點,求
AP
BP
的取值范圍.
(3)試問在圓x2+y2=a2上,是否存在一點M,使△F1MF2的面積S=b2(其中a為橢圓的半長軸長,b為橢圓的半短軸長,F1,F2為橢圓的兩個焦點),若存在,求tan∠F1MF2的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

點P在以F1、F2為焦點的橢圓
x2
16
+
y2
9
=1
上運動,則△F1F2P的重心G的軌跡方程是
9x2
16
+y2=1
(x≠0)
9x2
16
+y2=1
(x≠0)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓以坐標原點為中心,坐標軸為對稱軸,且該橢圓以拋物線y2=16x的焦點P為其一個焦點,以雙曲線
x2
16
-
y2
9
=1
的焦點Q為頂點.
(1)求橢圓的標準方程;
(2)已知點A(-1,0),B(1,0),且C、D分別為橢圓的上頂點和右頂點,點M是線段CD上的動點,求
AM
BM
的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

在以O為坐標原點的直角坐標系中,
OA
AB
,點A(4,-3),B點在第一象限且到x軸的距離為5.
(1) 求向量
AB
的坐標及OB所在的直線方程;
(2) 求圓(x-3)2+(y+1)2=10關于直線OB對稱的圓的方程;
(3) 設直線l
AB
為方向向量且過(0,a)點,問是否存在實數a,使得橢圓
x2
16
+y2=1上有兩個不同的點關于直線l對稱.若不存在,請說明理由; 存在請求出實數a的取值范圍.

查看答案和解析>>

同步練習冊答案