(13分)點(diǎn)P為圓
上一個(gè)動(dòng)點(diǎn),M為點(diǎn)P在y軸上的投影,動(dòng)點(diǎn)Q滿足
.
(1)求動(dòng)點(diǎn)Q的軌跡C的方程;
(2)一條直線l過(guò)點(diǎn)
,交曲線C于A、B兩點(diǎn),且A、B同在以點(diǎn)D(0,1)為圓心的圓上,求直線l的方程。
(1)
.(2)
.[來(lái)
解析試題分析:(1)
變形得
,即P點(diǎn)為M和Q的中點(diǎn),設(shè)動(dòng)點(diǎn)Q的坐標(biāo)為(x,y),利用“代入法”即得所求軌跡方程.
(2)首先考慮直線l的斜率不存在的情況,不符合題意;
設(shè)直線l的斜率為k,則直線方程為
,與橢圓方程聯(lián)立,應(yīng)用韋達(dá)定理得:![]()
![]()
從而得到弦AB的中點(diǎn) N點(diǎn)坐標(biāo)為
,
由
,可得
的方程,求
,求得直線l的方程.[來(lái)
試題解析:(1)
變形得
,即P點(diǎn)為M和Q的中點(diǎn),設(shè)動(dòng)點(diǎn)Q的坐標(biāo)為(x,y),則P點(diǎn)坐標(biāo)為
,將其代入到圓的方程中,得
,即為所求軌跡方程。
(2)當(dāng)直線l的斜率不存在時(shí),顯然不符合條件;
設(shè)直線l的斜率為k,則直線方程為
,將其代入到橢圓方程中并整理得![]()
設(shè)
,則由韋達(dá)定理得:![]()
[來(lái)源:Z,xx,k.Com]
設(shè)弦AB中點(diǎn)為N,則N點(diǎn)坐標(biāo)為
,
由題意得
,即![]()
所以
,解得
,所以所求直線l的方程為
.[來(lái)
考點(diǎn):平面向量的數(shù)量積,直線與橢圓的位置關(guān)系,直線垂直的條件.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
:
的左、右焦點(diǎn)分別為
、
,橢圓上的點(diǎn)
滿足
,且△
的面積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)橢圓
的左、右頂點(diǎn)分別為
、
,過(guò)點(diǎn)
的動(dòng)直線
與橢圓
相交于
、
兩點(diǎn),直線
與直線
的交點(diǎn)為
,證明:點(diǎn)
總在直線
上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:
的離心率為
,長(zhǎng)軸長(zhǎng)為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
交橢圓C于A、B兩點(diǎn),試問(wèn):在y軸正半軸上是否存在一個(gè)定點(diǎn)M滿足
,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給定橢圓C:
,若橢圓C的一個(gè)焦點(diǎn)為F(
,0),其短軸上的一個(gè)端點(diǎn)到F的距離為
.
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足
且
=0,其中N為橢圓的下頂點(diǎn),求直線在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)
,
,動(dòng)點(diǎn)G滿足
.
(Ⅰ)求動(dòng)點(diǎn)G的軌跡
的方程;
(Ⅱ)已知過(guò)點(diǎn)
且與
軸不垂直的直線l交(Ⅰ)中的軌跡
于P,Q兩點(diǎn).在線段
上是否存在點(diǎn)
,使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)如圖,某隧道設(shè)計(jì)為雙向四車道,車道總寬20m,要求通行車輛限高5m,隧道全長(zhǎng)2.5km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個(gè)橢圓。![]()
(1)若最大拱高h(yuǎn)為6 m,則隧道設(shè)計(jì)的拱寬
是多少?
(2)若要使隧道上方半橢圓部分的土方工程 量最小,則應(yīng)如何設(shè)計(jì)拱高h(yuǎn)和拱寬
?(已知:橢圓
+
=1的面積公式為S=
,柱體體積為底面積乘以高。)
(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個(gè)點(diǎn)M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點(diǎn)為支點(diǎn),用合金鋼板把隧道拱線部分連接封閉,形成一個(gè)梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價(jià)是梯形頂部單位面積鋼板造價(jià)的
倍,試確定M、N的位置以及
的值,使總造價(jià)最少。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓
及定點(diǎn)
,點(diǎn)
是圓
上的動(dòng)點(diǎn),點(diǎn)
在
上,且滿足
,
點(diǎn)的軌跡為曲線
。
(1)求曲線
的方程;
(2)若點(diǎn)
關(guān)于直線
的對(duì)稱點(diǎn)在曲線
上,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的方程為
,雙曲線
的左、右焦點(diǎn)分別為
的左、右頂點(diǎn),而
的左、右頂點(diǎn)分別是
的左、右焦點(diǎn)。
(1)求雙曲線
的方程;
(2)若直線
與橢圓
及雙曲線
都恒有兩個(gè)不同的交點(diǎn),且L與的兩個(gè)焦點(diǎn)A和B滿足
(其中O為原點(diǎn)),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
過(guò)點(diǎn)
,且離心率
。
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線
與橢圓
相交于
,
兩點(diǎn)(
不是左右頂點(diǎn)),橢圓的右頂點(diǎn)為D,且滿足
,試判斷直線
是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com