如圖,已知棱柱
的底面是菱形,且
面
,
,
,
為棱
的中點(diǎn),
為線段
的中點(diǎn),![]()
(Ⅰ)求證:
面
;
(Ⅱ)判斷直線
與平面
的位置關(guān)系,并證明你的結(jié)論;
(Ⅲ)求三棱錐
的體積.
(Ⅰ)證明:連結(jié)
、
交于點(diǎn)
,再連結(jié)
,
可得
且
,四邊形
是平行四邊形,由
,
平面
.
(Ⅱ)
平面
(Ⅲ)
.
解析試題分析:(Ⅰ)證明:連結(jié)
、
交于點(diǎn)
,再連結(jié)
,
,且
, 又
,故
且
,
四邊形
是平行四邊形,故
,
平面
4分
(Ⅱ)
平面
,下面加以證明:
在底面菱形
中
,
又
平面
,
面![]()
,
平面
,
,
平面
8分
(Ⅲ)過(guò)點(diǎn)
作
,垂足
,
平面
,
平面![]()
,
平面
,
在
中,
,
,故![]()
,
12分
考點(diǎn):本題主要考查立體幾何中的平行關(guān)系、垂直關(guān)系,體積計(jì)算。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問(wèn)題的一個(gè)基本思路。注意運(yùn)用轉(zhuǎn)化與化歸思想,將空間問(wèn)題轉(zhuǎn)化成平面問(wèn)題。本題含“探究性問(wèn)題”,這一借助于幾何體中的垂直關(guān)系。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐P-ABCD的三視圖如下圖所示,E是側(cè)棱PC上的動(dòng)點(diǎn).![]()
![]()
(1)求四棱錐P-ABCD的體積;
(2)是否不論點(diǎn)E在何位置,都有BD⊥AE?證明你的結(jié)論;
(3)若點(diǎn)E為PC的中點(diǎn),求二面角D-AE-B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在四棱錐
中,
,
是正三角形,
的交點(diǎn)
恰好是
中點(diǎn),又
,
,點(diǎn)
在線段
上,且
.![]()
(1)求證:
;
(2)求證:
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在底面是直角梯形的四棱錐S-ABCD中,![]()
![]()
(1)求四棱錐S-ABCD的體積;
(2)求證:![]()
(3)求SC與底面ABCD所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形, AF∥DE,AF⊥FE,AF=AD=2 DE=2.![]()
(Ⅰ) 求異面直線EF與BC所成角的大小;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為
,求AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知空間四邊形
中,
,
是
的中點(diǎn). ![]()
(Ⅰ)求證:
平面CDE;
(Ⅱ)若G為
的重心,試在線段AE上確定一點(diǎn)F,使得GF//平面CDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐P-ABCD的底面為正方形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD,![]()
(I) 求證:平面PAD⊥平面PCD
(II)求二面角A-PC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示的幾何體中,四邊形
為矩形,
為直角梯形,且
=
= 90°,平面
平面
,
,![]()
![]()
(1)若
為
的中點(diǎn),求證:
平面
;
(2)求平面
與平面
所成銳二面角的大小.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com