如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形, AF∥DE,AF⊥FE,AF=AD=2 DE=2.![]()
(Ⅰ) 求異面直線EF與BC所成角的大小;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為
,求AB的長.
(Ⅰ) 30°(Ⅱ) ![]()
解析試題分析: (Ⅰ) 延長AD,F(xiàn)E交于Q.
因?yàn)锳BCD是矩形,所以
BC∥AD,
所以∠AQF是異面直線EF與BC所成的角.
在梯形ADEF中,因?yàn)镈E∥AF,AF⊥FE,AF=2,DE=1得
∠AQF=30°.即異面直線EF與BC所成角的大小為30°. 7分![]()
(Ⅱ) 方法一:
設(shè)AB=x.取AF的中點(diǎn)G.由題意得DG⊥AF.
因?yàn)槠矫鍭BCD⊥平面ADEF,AB⊥AD,所以AB⊥平面ADEF,
所以AB⊥DG.所以DG⊥平面ABF.
過G作GH⊥BF,垂足為H,連結(jié)DH,則DH⊥BF,
所以∠DHG為二面角A-BF-D的平面角.
在直角△AGD中,AD=2,AG=1,得DG=
.
在直角△BAF中,由
=sin∠AFB=
,得
=
,
所以GH=
.
在直角△DGH中,DG=
,GH=
,得DH=
.
因?yàn)閏os∠DHG=
=
,得x=
,
所以AB=
. 15分
方法二:設(shè)AB=x.
以F為原點(diǎn),AF,F(xiàn)Q所在的直線分別為x軸,y軸建立空間直角坐標(biāo)系Fxyz.則![]()
F(0,0,0),A(-2,0,0),E(
,0,0),D(-1,
,0),B(-2,0,x),
所以
=(1,-
,0),
=(2,0,-x).
因?yàn)镋F⊥平面ABF,所以平面ABF的法向量可取
=(0,1,0).
設(shè)
=(x1,y1,z1)為平面BFD的法向量,則![]()
所以,可取
=(
,1,
).
因?yàn)閏os<
,
>=
=
,得x=
,
所以AB=
. 15分
考點(diǎn):本題主要考查空間點(diǎn)、線、面位置關(guān)系,異面直線所成角、二面角等基礎(chǔ)知識(shí),空間向量的應(yīng)用,同時(shí)考查空間想象能力和運(yùn)算求解能力。
點(diǎn)評(píng):如何用傳統(tǒng)的方法求解此類問題,要緊扣相應(yīng)的判定定理和性質(zhì)定理,還要注意各類角的取值范圍;如果用空間向量求解,思路比較簡單,但是運(yùn)算比較復(fù)雜,要仔細(xì)運(yùn)算.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,空間四邊形
的對(duì)棱
、
成
的角,且
,平行于
與
的截面分別交
、
、
、
于
、
、
、
.![]()
(1)求證:四邊形
為平行四邊形;
(2)
在
的何處時(shí)截面
的面積最大?最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知棱柱
的底面是菱形,且
面
,
,
,
為棱
的中點(diǎn),
為線段
的中點(diǎn),![]()
(Ⅰ)求證:
面
;
(Ⅱ)判斷直線
與平面
的位置關(guān)系,并證明你的結(jié)論;
(Ⅲ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱錐P-ABC中,PC
平面ABC,PC=AC=2,AB=BC,D是PB上一點(diǎn),且CD
平面PAB![]()
(1)求證:AB
平面PCB;
(2)求異面直線AP與BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com