已知函數(shù)
, ![]()
.
(1)若
, 函數(shù)
在其定義域是增函數(shù),求
的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)
的最小值;
(3)設(shè)函數(shù)
的圖象
與函數(shù)
的圖象
交于點(diǎn)
,過線段
的中點(diǎn)
作
軸的垂線分別交
、
于點(diǎn)
、
,問是否存在點(diǎn)
,使
在
處的切線與
在
處的切線平行?若存在,求出
的橫坐標(biāo);若不存在,請說明理由.
(1)
;(2)當(dāng)
時,
的最小值為
;當(dāng)
時,
的最小值為
;當(dāng)
時,
的最小值為
;(3)不存在點(diǎn).
解析試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、不等式基礎(chǔ)知識,考查函數(shù)思想、構(gòu)造函數(shù)思想、分類討論思想,考查綜合分析和解決問題的能力.第一問,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,轉(zhuǎn)化為恒成立問題,再轉(zhuǎn)化為求函數(shù)最值問題;第二問,利用配方法求最值,討論對稱軸與區(qū)間端點(diǎn)的大小,本問突出體現(xiàn)了分類討論思想的運(yùn)用;第三問,把問題坐標(biāo)化,用反證法證明,利用切線平行,列出方程,構(gòu)造函數(shù),判斷單調(diào)性求最值,得出矛盾.
試題解析:(1)依題意:![]()
在
上是增函數(shù),
對
恒成立, 2分
∴![]()
∵
,則
.
∴
的取值范圍為
4分
(2)設(shè)
,則函數(shù)化為![]()
∵![]()
∴當(dāng)
,即
時,函數(shù)
在
上為增函數(shù).
當(dāng)
時,
; 6分
當(dāng)
,即
時,當(dāng)
時,
;
當(dāng)
,即
時,函數(shù)
在
上是減函數(shù).
當(dāng)
時,
8分
綜上所述,當(dāng)
時,
的最小值為
.
當(dāng)
時,
的最小值為
.
當(dāng)
時,
的最小值為
. 9分
(3)設(shè)點(diǎn)
的坐標(biāo)是
且
則點(diǎn)
的橫坐標(biāo)為![]()
在點(diǎn)
處的切線斜率為![]()
在點(diǎn)
處的切線斜率為
10分
假設(shè)
在點(diǎn)
處的切線與
在點(diǎn)
處的切線平行,則![]()
則
11分
則![]()
![]()
![]()
![]()
![]()
設(shè)
,則
① 12分
令
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計要求容器的體積為
立方米,且
.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為
千元,設(shè)該容器的建造費(fèi)用為
千元.![]()
(Ⅰ)寫出
關(guān)于
的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(Ⅱ)求該容器的建造費(fèi)用最小時的
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f1/f/zc7s2.png" style="vertical-align:middle;" />,
(1)求
;
(2)當(dāng)
時,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A、B、C是直線
上的不同三點(diǎn),O是
外一點(diǎn),向量
滿足
,記
;
(1)求函數(shù)
的解析式;
(2)求函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知冪函數(shù)
的圖象與x軸,y軸無交點(diǎn)且關(guān)于原點(diǎn)對稱,又有函數(shù)f(x)=x2-alnx+m-2在(1,2]上是增函數(shù),g(x)=x-
在(0,1)上為減函數(shù).
①求a的值;
②若
,數(shù)列{an}滿足a1=1,an+1=p(an),(n∈N+),數(shù)列{bn},滿足
,
,求數(shù)列{an}的通項(xiàng)公式an和sn.
③設(shè)
,試比較[h(x)]n+2與h(xn)+2n的大。╪∈N+),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
![]()
.
(I)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,對
都有
成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明:
(
且
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)請寫出函數(shù)
在每段區(qū)間上的解析式,并在圖中的直角坐標(biāo)系中作出函數(shù)
的圖象;
(II)若不等式
對任意的實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時,f(x)=x.
(1)求f(π)的值;
(2)當(dāng)-4≤x≤4時,求f(x)的圖象與x軸所圍成圖形的面積;
(3)寫出(-∞,+∞)內(nèi)函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com