中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本題滿分12分)
已知函數
(1)判斷該函數在區間(2,+∞)上的單調性,并給出證明;
(2)求該函數在區間[3,6]上的最大值和最小值.

(1)在區間(2,+∞)是減函數,證明:x1x2是區間上的任意兩個實數,且x1<x2,f(x1)-f(x2)=  -由2< x1 <x2得f (x1)-f (x2)>0,所以函數在區間(2,+∞)是減函數(2)最大值3,最小值

解析試題分析:(1)函數在區間(2,+∞)是減函數       …………2分
證明:設x1x2是區間上的任意兩個實數,且x1<x2,則
f(x1)-f(x2)=  -                   …………4分
由2< x1 <x2,得x2x1>0,( x1-2) ( x2-2)>0
于是f (x1)-f (x2)>0,f (x1)>f (x2)
函數在區間(2,+∞)是減函數.              …………8分
(2)由可知在區間[3,6]的兩個端點上分別取得最大值和最小值,即當x=3時取得最大值3,當x=6時取得最小值 .             …………12分
考點:定義法判定函數的單調性,利用單調性求最值
點評:定義法判定單調性的步驟:1,所給區間取,2,計算,3,判定差值的正負號,4,得到函數單調性

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數是定義域為的奇函數,(1)求實數的值;(2)證明上的單調函數;(3)若對于任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)當時,討論的單調性;
(Ⅱ)設時,若對任意,存在,使,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)已知函數,其中.(1) 討論函數的單調性,并求出的極值;(2) 若對于任意,都存在,使得,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
為實數,且
(1)求方程的解;
(2)若滿足,試寫出的等量關系(至少寫出兩個);
(3)在(2)的基礎上,證明在這一關系中存在滿足.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
設函數,其中表示不超過的最大整數,如.
 (1)求的值;
(2)若在區間上存在x,使得成立,求實數k的取值范圍;
(3)求函數的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)
已知函數
(1)求的值;
(2)當時,求函數的值域。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)已知函數
(1)若,求的單調區間;
(2)當時,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
已知函數,記
(Ⅰ)判斷的奇偶性,并證明;
(Ⅱ)對任意,都存在,使得.若,求實數的值;
(Ⅲ)若對于一切恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案