(本小題滿分12分)設直線
與橢圓
相交于
兩個不同的點,與
軸相交于點
,記
為坐標原點.
(1)證明:![]()
(2)若
且
的面積及橢圓方程.
科目:高中數學 來源: 題型:解答題
已知拋物線頂點在原點,焦點在x軸上,又知此拋物線上一點A(4,m)到焦點的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線
相交于不同的兩點A、B,且AB中點橫坐標為2,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓
:
的右焦點
與拋物線
的焦點重合,過
作與
軸垂直的直線
與橢圓交于
兩點,與拋物線交于
兩點,且
。
(1)求橢圓
的方程;
(2)若過點
的直線與橢圓
相交于兩點
,設
為橢圓
上一點,且滿足![]()
為坐標原點),當
時,求實數
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:
=1(a>b>0)的離心率為
,短軸一個端點到右焦點的距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為
,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
雙曲線的中心為原點
,焦點在
軸上,兩條漸近線分別為
,經過右焦點
垂直于
的直線分別交
于
兩點.已知
成等差數列,且
與
同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設
被雙曲線所截得的線段的長為4,求雙曲線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分15分)
在平面內,已知橢圓
的兩個焦點為
,橢圓的離心率為
,
點是橢圓上任意一點, 且
,
(1)求橢圓的標準方程;
(2)以橢圓的上頂點
為直角頂點作橢圓的內接等腰直角三角形
,這樣的等腰直角三角形是否存在?若存在請說明有幾個、并求出直角邊所在直線方程?若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
已知橢圓
的離心率為
,橢圓C上任意一點到橢圓兩個焦點的距離之和為6。
(1)求橢圓C的方程;
(2)設直線
與橢圓C交于A、B兩點,點P(0,1),且|PA|=|PB|,求直線
的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在原點,它的準線過雙曲線
的一個焦點,并與雙曲線的實軸垂直,已知拋物線與雙曲線的交點為
.
(1)求拋物線的方程;
(2)求雙曲線的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com