已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線
的一個(gè)焦點(diǎn),并與雙曲線的實(shí)軸垂直,已知拋物線與雙曲線的交點(diǎn)為
.
(1)求拋物線的方程;
(2)求雙曲線的方程.
(1)
;(2)![]()
解析試題分析:(1)由題意知,拋物線的焦點(diǎn)在
軸上,又過點(diǎn)
,
所以,設(shè)拋物線方程為
, 2分
代入點(diǎn)
,有![]()
得
, 5分
所以拋物線的方程為
6分
(2)由(1)知所求雙曲線的一個(gè)焦點(diǎn)為
,
9分
設(shè)所求雙曲線方程為
代入點(diǎn)
,得
,
故所求雙曲線的方程為
12分
考點(diǎn):本題考查了拋物線與雙曲線方程的求法
點(diǎn)評:求指定的圓錐曲線的方程是高考命題的重點(diǎn),主要考查識畫圖、數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化、分類討論、邏輯推理、合理運(yùn)算及創(chuàng)新思維能力,解決好這類問題,除要求熟練掌握好圓錐曲線的定義、性質(zhì)外,命題人還常常將它與對稱問題、弦長問題、最值問題等綜合在一起命制難度較大的題
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)直線
與橢圓
相交于
兩個(gè)不同的點(diǎn),與
軸相交于點(diǎn)
,記
為坐標(biāo)原點(diǎn).
(1)證明:![]()
(2)若
且
的面積及橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知焦點(diǎn)在
軸上的橢圓
過點(diǎn)
,且離心率為
,
為橢圓
的左頂點(diǎn).
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)已知過點(diǎn)
的直線
與橢圓
交于
,
兩點(diǎn).
① 若直線
垂直于
軸,求
的大小;
② 若直線
與
軸不垂直,是否存在直線
使得
為等腰三角形?如果存在,求出直線
的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的頂點(diǎn)與雙曲線
的焦點(diǎn)重合,它們的離心率之和為
,若橢圓的焦點(diǎn)在
軸上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
(
)的一個(gè)頂點(diǎn)為
,離心率為
,直線
與橢圓
交于不同的兩點(diǎn)
、
.(1) 求橢圓
的方程;(2) 當(dāng)
的面積為
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知點(diǎn)F是拋物線C:
的焦點(diǎn),S是拋物線C在第一象限內(nèi)的點(diǎn),且|SF|=
. ![]()
(Ⅰ)求點(diǎn)S的坐標(biāo);
(Ⅱ)以S為圓心的動(dòng)圓與
軸分別交于兩點(diǎn)A、B,延長SA、SB分別交拋物線C于M、N兩點(diǎn);
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交
軸于點(diǎn)E,若|EM|=
|NE|,求cos∠MSN的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩個(gè)焦點(diǎn)分別為
,離心率
。
(1)求橢圓方程;
(2)一條不與坐標(biāo)軸平行的直線l與橢圓交于不同的兩點(diǎn)M、N,且線段MN中點(diǎn)的橫坐標(biāo)為–
,求直線l傾斜角的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(文)已知橢圓
的一個(gè)焦點(diǎn)為
,點(diǎn)
在橢圓
上,點(diǎn)
滿足
(其中
為坐標(biāo)原點(diǎn)), 過點(diǎn)
作一斜率為
的直線交橢圓于
、
兩點(diǎn)(其中
點(diǎn)在
軸上方,
點(diǎn)在
軸下方) .![]()
(1)求橢圓
的方程;
(2)若
,求
的面積;
(3)設(shè)點(diǎn)
為點(diǎn)
關(guān)于
軸的對稱點(diǎn),判斷
與
的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知雙曲線C與橢圓
有相同的焦點(diǎn),實(shí)半軸長為
.
(Ⅰ)求雙曲線
的方程;
(Ⅱ)若直線
與雙曲線
有兩個(gè)不同的交點(diǎn)
和
,且![]()
(其中
為原點(diǎn)),求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com