設數列{an}的各項均為正數.若對任意的n∈N*,存在k∈N*,使得
=an·an+2k成立,則稱數列{an}為“Jk型”數列.
(1)若數列{an}是“J2型”數列,且a2=8,a8=1,求a2n;
(2)若數列{an}既是“J3型”數列,又是“J4型”數列,證明:數列{an}是等比數列.
科目:高中數學 來源: 題型:解答題
已知數列{an}中,a1=1,an+1=
(n∈N*).
(1)求證: 數列 {
+
}是等比數列,并求數列{an}的通項an
(2)若數列{bn}滿足bn=(3n-1)
an,數列{bn}的前n項和為Tn,若不等式(-1)nλ<Tn對一切n∈N*恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
學校餐廳每天供應500名學生用餐,每星期一有A,B兩種菜可供選擇。調查表明,凡是在這星期一選A菜的,下星期一會有
改選B菜;而選B菜的,下星期一會有
改選A菜。用
分別表示第
個星期選A的人數和選B的人數.
⑴試用
表示
,判斷數列
是否成等比數列并說明理由;
⑵若第一個星期一選A神菜的有200人,那么第10個星期一選A種菜的大約有多少人?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com