| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù)f(x)=
,
(1)判斷函數(shù)的奇偶性;(2)證明f(x)是R上的增函數(shù); (3)求該函數(shù)的值域;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,且
,其中
是自然對數(shù)的底數(shù).
(1)求
與
的關(guān)系;
(2)若
在其定義域內(nèi)為單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
.
(1)用定義證明:不論
為何實(shí)數(shù)
在
上為增函數(shù);
(2)若
為奇函數(shù),求
的值;
(3)在(2)的條件下,求
在區(qū)間[1,5]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)a∈R,函數(shù)f(x)=lnx-ax.
(1)討論函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)已知
(e為自然對數(shù)的底數(shù))和x2是函數(shù)f(x)的兩個不同的零點(diǎn),求a的值并證明:x2>e
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)函數(shù)
(1)若
,求
的值域
(2)若
在區(qū)間
上有最大值14。求
的值;
(3)在(2)的前題下,若
,作出
的草圖,并通過圖象求出函數(shù)
的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
的定義域是
,且
對任意不為零的實(shí)數(shù)x都滿足
=
.已知當(dāng)x>0時![]()
(1)求當(dāng)x<0時,
的解析式 (2)解不等式
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com