中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數.
(1)當時,證明:上為減函數;
(2)若有兩個極值點求實數的取值范圍.

(1)用導數來證明 (2)

解析試題分析:(1)證明:時,,
時,;時,;
在區間遞增,在區間遞減;
,即上恒成立,遞減.          
(2)解:若有兩個極值點,則是方程的兩個根,故方程有兩個根,又顯然不是該方程的根,所以方程有兩個根,
時,單調遞減,
時,時,單調遞減,當時,單調遞增,要使方程有兩個根,需的取值范圍為  
考點:利用導數研究函數的極值及單調性.
點評:本題考查了導數在解決函數極值和證明不等式中的應用,解題時要認真求導,防止錯到起點,還要有數形結合的思想,提高解題速度.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,,其中
(1)若是函數的極值點,求實數的值;
(2)若對任意的為自然對數的底數)都有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數
(1)若,求實數b,c的值;
(2)若
求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,記的導函數,的導函數
,
的導函數,…,的導函數,.
(1)求;
(2)用n表示;
(3)設,是否存在使最大?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖象過點,且點處的切線方程為在
(1)求函數的解析式;            (2)求函數的單調區間。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


設命題p:函數的定義域為R;命題q:不等式對任意恒成立.
(Ⅰ)如果p是真命題,求實數的取值范圍;
(Ⅱ)如果命題“p或q”為真命題且“p且q”為假命題,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對于定義在實數集上的兩個函數,若存在一次函數使得,對任意的,都有,則把函數的圖像叫函數的“分界線”,F已知,為自然對數的底數),
(1)求的遞增區間;
(2)當時,函數是否存在過點的“分界線”?若存在,求出函數的解析式,若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=3-2log2xg(x)=log2x.
(1)如果x∈[1,4],求函數h(x)=(f(x)+1)g(x)的值域;
(2)求函數M(x)=的最大值;
(3)如果不等式f(x2)f()>kg(x)對x∈[2,4]有解,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為常數,是自然對數的底數)是實數集上的奇函數.
(1)求的值;
(2)試討論函數的零點的個數.

查看答案和解析>>

同步練習冊答案