已知等差數(shù)列
,
是
的前
項(xiàng)和,且
.
(1)求
的通項(xiàng)公式;
(2)設(shè)
,
是
的前n項(xiàng)和,是否存在正數(shù)
,對(duì)任意正整數(shù)
,不等式
恒成立?若存在,求
的取值范圍;若不存在,說明理由.
(3)判斷方程
是否有解,說明理由;
(1)
;(2)
;(3)無解。
解析試題分析:(1)由
,
所以
(2) 由
恒成立,則
恒成立
即
,又
所以
[
所以
即
故
(3)
, 由于
,
則方程為:![]()
①
時(shí),
無解②
時(shí),
所以
所以
無解
③
時(shí),![]()
所以
無解綜上所述,對(duì)于一切正整數(shù)原方程都無解.
考點(diǎn):等差數(shù)列的性質(zhì);數(shù)列通項(xiàng)公式的求法;數(shù)列與不等式的綜合應(yīng)用。
點(diǎn)評(píng):本題考查數(shù)列與不等式的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化。此題難度較大。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)數(shù)列
的前
項(xiàng)的和為
,對(duì)于任意的自然數(shù)
,![]()
(Ⅰ)求證:數(shù)列
是等差數(shù)列,并求通項(xiàng)公式
(Ⅱ)設(shè)
,求和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
等差數(shù)列
中,
,
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)若
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)已知點(diǎn)Pn(an,bn)滿足an+1=an·bn+1,bn+1=
(n∈N*)且點(diǎn)P1的坐標(biāo)為(1,-1).(1)求過點(diǎn)P1,P2的直線l的方程;
(2)試用數(shù)學(xué)歸納法證明:對(duì)于n∈N*,點(diǎn)Pn都在(1)中的直線l上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
是等差數(shù)列,且![]()
(1)求數(shù)列
的通項(xiàng)公式;
(2)令
求數(shù)列
的前項(xiàng)n和公式
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)在數(shù)列
中,
,
,
.
(1)證明數(shù)列
是等比數(shù)列;
(2)設(shè)數(shù)列
的前
項(xiàng)和
,求
的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列
的首項(xiàng)
,前
項(xiàng)和
滿足關(guān)系式: ![]()
(1)求證:數(shù)列
是等比數(shù)列;
(2)設(shè)數(shù)列
是公比為
,作數(shù)列
,使![]()
,
求和:
;
(3)若
,設(shè)
,
,
求使![]()
恒成立的實(shí)數(shù)k的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題14分)已知
是等差數(shù)列,其前n項(xiàng)和為Sn,
是等比數(shù)列,且
,
.
(Ⅰ)求數(shù)列
與
的通項(xiàng)公式;
(Ⅱ)記
,
,求
(
).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com