已知橢圓
:
的長軸長為4,且過點
.
(1)求橢圓
的方程;
(2)設
、
、
是橢圓上的三點,若
,點
為線段
的中點,
、
兩點的坐標分別為
、
,求證:
.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,直線l與拋物線
相交于不同的兩點A,B.
(I)如果直線l過拋物線的焦點,求
的值;
(II)如果
,證明直線l必過一定點,并求出該定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設
是拋物線![]()
上相異兩點,
到y軸的距離的積為
且
.![]()
(1)求該拋物線的標準方程.
(2)過Q的直線與拋物線的另一交點為R,與
軸交點為T,且Q為線段RT的中點,試求弦PR長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知,橢圓C過點
,兩個焦點為
.
(1)求橢圓C的方程;
(2)
是橢圓C上的兩個動點,如果直線
的斜率與
的斜率互為相反數,證明直線
的斜率為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知定點A(-2,0)、B(2,0),異于A、B兩點的動點P滿足
,其中k1、k2分別表示直線AP、BP的斜率.![]()
(Ⅰ)求動點P的軌跡E的方程;
(Ⅱ)若N是直線x=2上異于點B的任意一點,直線AN與(I)中軌跡E交予點Q,設直線QB與以NB為直徑的圓的一個交點為M(異于點B),點C(1,0),求證:|CM|·|CN| 為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的左、右焦點分別為
、
,P為橢圓
上任意一點,且
的最小值為
.
(1)求橢圓
的方程;
(2)動圓
與橢圓
相交于A、B、C、D四點,當
為何值時,矩形ABCD的面積取得最大值?并求出其最大面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知一條曲線
在
軸右邊,
上每一點到點
的距離減去它到
軸距離的差都等于1.
(1)求曲線C的方程;
(2)若過點M
的直線
與曲線C有兩個交點
,且
,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
分別是橢圓
的左、右頂點,點
在橢圓
上,且直線
與直線
的斜率之積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)如圖,已知
是橢圓
上不同于頂點的兩點,直線
與
交于點
,直線
與
交于點
.① 求證:
;② 若弦
過橢圓的右焦點
,求直線
的方程.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com