中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設函數f(x)定義在(0,+∞)上,f(1)=0,導函數f′(x)=
1
x
,g(x)=f(x)+f′(x).則g(x)的最小值是______.
∵函數f(x)定義在(0,+∞)上,f(1)=0,導函數f′(x)=
1
x

∴f(x)=lnx,
∴g(x)=f(x)+f′(x)=lnx+
1
x

g(x)=
1
x
-
1
x2
=
x-1
x2

由g′(x)=0,得x=1.
∵0<x<1時,g′(x)<0;x>1時,g′(x)>0.
∴g(x)的增區間是(1,+∞),減區間是(0,1).
∴g(x)min=g(1)=ln1+
1
1
=1.
故答案為:1.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,已知二次函數f(x)=ax2+bx+c,直線l1:x=2,直線l2:y=3tx(其中-1<t<1,t為數);.若直線l2與函數f(x)的圖象以及直線l1,l2與函數f(x)的圖象所圍成的封閉圖形如陰影所示.
(1)求y=f(x);
(2)求陰影面積s關于t的函數y=s(t)的解析式;(3)若過點A(1,m),m≠4可作曲線y=s(t),t∈R的三條切線,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,函數f(x)的圖象是折線段ABC,其A,B,C的坐標分別為(0,4),(2,0),(6,4),則
lim
△x→0
f(1+△x)-f(1)
△x
=______.(用數字作答)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數g(x)=(a-2)x(x>-1),函數f(x)=ln(1+x)+bx的圖象如圖所示.
(I)求b的值;
(II)求函數F(x)=f(x)-g(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數f(x)=x3+ax2+ax(x∈R)不存在極值點,則a的取值范圍是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=xe-x(x∈R)
(Ⅰ)求函數f(x)的單調區間和極值;
(Ⅱ)已知函數y=g(x)的圖象與函數y=f(x)的圖象關于直線x=1對稱,證明:當x>1時,f(x)>g(x);
(Ⅲ)如果x1≠x2,且f(x1)=f(x2),證明x1+x2>2.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知f(x)=ax-ln(-x),x∈(-e,0),g(x)=-
ln(-x)
x
,其中e是自然常數,a∈R.
(1)討論a=-1時,f(x)的單調性、極值;
(2)求證:在(1)的條件下,|f(x)|>g(x)+
1
2

(3)是否存在實數a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

曲線y=lnx在點(1,0)處的切線與坐標軸圍成的三角形的面積是(  )
A.
3
4
B.
4
5
C.
1
4
D.
1
2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=lnx-
a
x

(Ⅰ)若a>0,試判斷f(x)在定義域內的單調性;
(Ⅱ)若f(x)在[1,e]上的最小值為
3
2
,求a的值;
(Ⅲ)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案