中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知數列的各項均為正數,為其前項和,對于任意的,滿足關系式
(1)求數列的通項公式;
(2)設數列的通項公式是,前項和為,求證:對于任意的正整數,總有.

(1);(2)詳見解析.

解析試題分析:(1)仿寫,兩式相減可得數列是一個等比數列,求出其通項;(2)化簡為,結合其特點利用裂項相消法求和.
試題解析:
(1)由已知得


故數列為等比數列,且
又當時,
所以 亦適合上式
                   6分
(2)
所以.          12分
考點:1.數列通項的求解;2.數列的求和方法(裂項相消法).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某產品具有一定的時效性,在這個時效期內,由市場調查可知,在不做廣告宣傳且每件獲利元的前提下,可賣出件;若做廣告宣傳,廣告費為千元比廣告費為千元時多賣出件.
(Ⅰ)試寫出銷售量的函數關系式;
(Ⅱ)當時,廠家應生產多少件這種產品,做幾千元的廣告,才能獲利最大?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,數列滿足
⑴求數列的通項公式;
⑵設,若恒成立,求實數的取值范圍;
⑶是否存在以為首項,公比為的數列,使得數列中每一項都是數列中不同的項,若存在,求出所有滿足條件的數列的通項公式;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的前項和為,若
⑴證明數列為等差數列,并求其通項公式;
⑵令,①當為何正整數值時,:②若對一切正整數,總有,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數同時滿足:①不等式 的解集有且只有一個元素;②在定義域內存在,使得不等式成立 設數列的前項和為
(1)求數列的通項公式;
(2)設各項均不為零的數列中,所有滿足的正整數的個數稱為這個數列的變號數,令為正整數),求數列的變號數

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

是正數組成的數列,.若點在函數的導函數圖像上.
(1)求數列的通項公式;
(2)設,是否存在最小的正數,使得對任意都有成立?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設等差數列的前項和,且.
(1)求數列的通項公式;
(2)若數列滿足,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列及其前項和滿足:).
(1)證明:設是等差數列;(2)求.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列滿足
(1)設是公差為的等差數列.當時,求的值;
(2)設求正整數使得一切均有

查看答案和解析>>

同步練習冊答案