過拋物線
的頂點(diǎn)作射線
與拋物線交于
,若
,求證:直線
過定點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
的焦點(diǎn)
到準(zhǔn)線的距離為
.過點(diǎn)![]()
![]()
作直線
交拋物線
與
兩點(diǎn)(
在第一象限內(nèi)).
(1)若
與焦點(diǎn)
重合,且
.求直線
的方程;
(2)設(shè)
關(guān)于
軸的對稱點(diǎn)為
.直線
交
軸于
. 且
.求點(diǎn)
到直線
的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
是拋物線為
上的一點(diǎn),以S為圓心,r為半徑(
)做圓,分別交x軸于A,B兩點(diǎn),連結(jié)并延長SA、SB,分別交拋物線于C、D兩點(diǎn)。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負(fù)半軸于點(diǎn)E,若EC : ED =" 1" : 3,求
的值。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線C:
離心率是
,過點(diǎn)
,且右支上的弦
過右焦點(diǎn)
.
(1)求雙曲線C的方程;
(2)求弦
的中點(diǎn)
的軌跡E的方程;
(3)是否存在以
為直徑的圓過原點(diǎn)O?,若存在,求出直線
的斜率k 的值.若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線
="1"
的兩個(gè)焦點(diǎn)為
、
,P是雙曲線上的一點(diǎn),
且滿足
,
(1)求
的值;
(2)拋物線
的焦點(diǎn)F與該雙曲線的右頂點(diǎn)重合,斜率為1的直線經(jīng)過點(diǎn)F與該拋物線交于A、B兩點(diǎn),求弦長|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013·上海高考)如圖,已知雙曲線C1:
-y2=1,曲線C2:|y|=|x|+1.P是平面內(nèi)一點(diǎn).若存在過點(diǎn)P的直線與C1,C2都有共同點(diǎn),則稱P為“C1-C2型點(diǎn)”.![]()
(1)在正確證明C1的左焦點(diǎn)是“C1-C2型點(diǎn)”時(shí),要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證).
(2)設(shè)直線y=kx與C2有公共點(diǎn),求證|k|>1,進(jìn)而證明原點(diǎn)不是“C1-C2型點(diǎn)”.
(3)求證:圓x2+y2=
內(nèi)的點(diǎn)都不是“C1-C2型點(diǎn)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
、
為橢圓
的左右焦點(diǎn),點(diǎn)
為其上一點(diǎn),且有![]()
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過
的直線
與橢圓
交于
、
兩點(diǎn),過
與
平行的直線
與橢圓
交于
、
兩點(diǎn),求四邊形
的面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓
的中心和拋物線
的頂點(diǎn)均為原點(diǎn)
,
、
的焦點(diǎn)均在
軸上,過
的焦點(diǎn)F作直線
,與
交于A、B兩點(diǎn),在
、
上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:![]()
![]()
(1)求
,
的標(biāo)準(zhǔn)方程;
(2)若
與
交于C、D兩點(diǎn),
為
的左焦點(diǎn),求
的最小值;
(3)點(diǎn)
是
上的兩點(diǎn),且
,求證:
為定值;反之,當(dāng)
為此定值時(shí),
是否成立?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•浙江)如圖,點(diǎn)P(0,﹣1)是橢圓C1:
+
=1(a>b>0)的一個(gè)頂點(diǎn),C1的長軸是圓C2:x2+y2=4的直徑,l1,l2是過點(diǎn)P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A、B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時(shí)直線l1的方程.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com