如圖,
是拋物線為
上的一點,以S為圓心,r為半徑(
)做圓,分別交x軸于A,B兩點,連結并延長SA、SB,分別交拋物線于C、D兩點。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負半軸于點E,若EC : ED =" 1" : 3,求
的值。![]()
科目:高中數學 來源: 題型:解答題
如圖,橢圓
上的點M與橢圓右焦點
的連線
與x軸垂直,且OM(O是坐標原點)與橢圓長軸和短軸端點的連線AB平行.
(1)求橢圓的離心率;
(2)F1是橢圓的左焦點,C是橢圓上的任一點,證明:
;
(3)過
且與AB垂直的直線交橢圓于P、Q,若
的面積是20
,求此時橢圓的方程.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓
的圓心在坐標原點
,且恰好與直線
相切,設點A為圓上一動點,
軸于點
,且動點
滿足
,設動點
的軌跡為曲線![]()
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點
是橢圓
上任一點,點
到直線
的距離為
,到點
的距離為
,且
.直線
與橢圓
交于不同兩點
、
(
,
都在
軸上方),且
.
(1)求橢圓
的方程;
(2)當
為橢圓與
軸正半軸的交點時,求直線
方程;
(3)對于動直線
,是否存在一個定點,無論
如何變化,直線
總經過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,過
的左焦點
的直線
被圓
截得的弦長為
.
(1)求橢圓
的方程;
(2)設
的右焦點為
,在圓
上是否存在點
,滿足
,若存在,指出有幾個這樣的點(不必求出點的坐標);若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知直線
:
和橢圓
,橢圓C的離心率為
,連結橢圓的四個頂點形成四邊形的面積為
.
(1)求橢圓C的方程;
(2)若直線
與橢圓C有兩個不同的交點,求實數m的取值范圍;
(3)當
時,設直線
與y軸的交點為P,M為橢圓C上的動點,求線段PM長度的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的中心在原點,焦點在
軸上,橢圓上的點到焦點的最小距離為
,離心率
.
(1)求橢圓
的方程;
(2)若直線
交
于
、
兩點,點
,問是否存在
,使
?若存在求出
的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com