已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,橢圓上的點(diǎn)到焦點(diǎn)的最小距離為
,離心率
.
(1)求橢圓
的方程;
(2)若直線
交
于
、
兩點(diǎn),點(diǎn)
,問是否存在
,使
?若存在求出
的值,若不存在,請(qǐng)說明理由.
(1)
;(2)![]()
解析試題分析:(1)由橢圓上的點(diǎn)到焦點(diǎn)的最小距離為
,即
.又離心率
.解出
的值.即可求出
.從而得到橢圓的方程.
(2)直線
交
于
、
兩點(diǎn),點(diǎn)
,若存在
,使
.由直線與橢圓的方程聯(lián)立以及韋達(dá)定理可得到關(guān)于
的等式.再由
向量的垂直同樣可得到關(guān)于點(diǎn)
的坐標(biāo)的關(guān)系式.即可得到結(jié)論.
(1)設(shè)橢圓E的方程為
,![]()
由已知得
,
,從而
(2分)
橢圓E的方程為
(4分)
(2)由
![]()
![]()
設(shè)
、
, 則
,
,![]()
(6分)
由題意
,
(8分)
要
,就要
, 又
,![]()
,![]()
![]()
![]()
,![]()
(10分)![]()
或
,又
,![]()
,
故存在
使得
. (12分)
考點(diǎn):1.待定系數(shù)法求橢圓的方程.2.向量的知識(shí).3.解方程的思想.4.運(yùn)算能力.5.分析解決數(shù)學(xué)問題的能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
是拋物線為
上的一點(diǎn),以S為圓心,r為半徑(
)做圓,分別交x軸于A,B兩點(diǎn),連結(jié)并延長SA、SB,分別交拋物線于C、D兩點(diǎn)。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負(fù)半軸于點(diǎn)E,若EC : ED =" 1" : 3,求
的值。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
、
為橢圓
的左右焦點(diǎn),點(diǎn)
為其上一點(diǎn),且有![]()
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過
的直線
與橢圓
交于
、
兩點(diǎn),過
與
平行的直線
與橢圓
交于
、
兩點(diǎn),求四邊形
的面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,短軸端點(diǎn)分別為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若
,
是橢圓
上關(guān)于
軸對(duì)稱的兩個(gè)不同點(diǎn),直線
與
軸交于點(diǎn)
,判斷以線段
為直徑的圓是否過點(diǎn)
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,已知?jiǎng)狱c(diǎn)
到點(diǎn)
的距離為
,到
軸的距離為
,且
.
(1)求點(diǎn)
的軌跡
的方程;
(2) 若直線
斜率為1且過點(diǎn)
,其與軌跡
交于點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
,過點(diǎn)
且離心率為
.![]()
(1)求橢圓
的方程;
(2)已知
是橢圓
的左右頂點(diǎn),動(dòng)點(diǎn)M滿足
,連接AM交橢圓于點(diǎn)P,在x軸上是否存在異于A、B的定點(diǎn)Q,使得直線BP和直線MQ垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓
的中心和拋物線
的頂點(diǎn)均為原點(diǎn)
,
、
的焦點(diǎn)均在
軸上,過
的焦點(diǎn)F作直線
,與
交于A、B兩點(diǎn),在
、
上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:![]()
![]()
(1)求
,
的標(biāo)準(zhǔn)方程;
(2)若
與
交于C、D兩點(diǎn),
為
的左焦點(diǎn),求
的最小值;
(3)點(diǎn)
是
上的兩點(diǎn),且
,求證:
為定值;反之,當(dāng)
為此定值時(shí),
是否成立?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓c:
(a>b>0)的離心率為
,過其右焦點(diǎn)F與長軸垂直的弦長為1,
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點(diǎn)分別為A,B,點(diǎn)P是直線x=1上的動(dòng)點(diǎn),直線PA與橢圓的另一個(gè)交點(diǎn)為M,直線PB與橢圓的另一個(gè)交點(diǎn)為N,求證:直線MN經(jīng)過一定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•浙江)如圖,點(diǎn)P(0,﹣1)是橢圓C1:
+
=1(a>b>0)的一個(gè)頂點(diǎn),C1的長軸是圓C2:x2+y2=4的直徑,l1,l2是過點(diǎn)P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A、B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時(shí)直線l1的方程.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com