已知橢圓
的離心率為
,短軸端點(diǎn)分別為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若
,
是橢圓
上關(guān)于
軸對稱的兩個(gè)不同點(diǎn),直線
與
軸交于點(diǎn)
,判斷以線段
為直徑的圓是否過點(diǎn)
,并說明理由.
(1)橢圓的標(biāo)準(zhǔn)方程為
;(2)點(diǎn)
不在以線段
為直徑的圓上.
解析試題分析:(1)求橢圓
的標(biāo)準(zhǔn)方程,已知橢圓
的離心率為
,短軸端點(diǎn)分別為
,可設(shè)橢圓方程為
,由
,可得
,從而得橢圓
的標(biāo)準(zhǔn)方程;(2)由于
,
是橢圓
上關(guān)于
軸對稱的兩個(gè)不同點(diǎn),可設(shè)
則
,若點(diǎn)
在以線段
為直徑的圓上,則
,即
,即
,因此可寫出直線
的方程為
,令
,得
,寫出向量
的坐標(biāo),看
是否等于0,即可判斷出.
(1)由已知可設(shè)橢圓
的方程為:
1分
由
,可得
, 3分
解得
, 4分
所以橢圓的標(biāo)準(zhǔn)方程為
. 5分
(2)法一:設(shè)
則
6分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/46/8/cqrj71.png" style="vertical-align:middle;" />,
所以直線
的方程為
, 7分
令
,得
,所以
. 8分
所以
9分
所以
, 10分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/19/9/xryv5.png" style="vertical-align:middle;" />,代入得
11分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e1/d/ho3bj2.png" style="vertical-align:middle;" />,所以
. 12分
所以
, 13分
所以點(diǎn)
不在以線段![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
是橢圓
上任一點(diǎn),點(diǎn)
到直線
的距離為
,到點(diǎn)
的距離為
,且
.直線
與橢圓
交于不同兩點(diǎn)
、
(
,
都在
軸上方),且
.
(1)求橢圓
的方程;
(2)當(dāng)
為橢圓與
軸正半軸的交點(diǎn)時(shí),求直線
方程;
(3)對于動(dòng)直線
,是否存在一個(gè)定點(diǎn),無論
如何變化,直線
總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C1:
=1(a>b>0)的左、右焦點(diǎn)分別為為
,
恰是拋物線C2:
的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
.
(1)求C1的方程;
(2)平面上的點(diǎn)N滿足
,直線l∥MN,且與C1交于A,B兩點(diǎn),若
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
的焦點(diǎn)為
,點(diǎn)
是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,
.
(1)求拋物線的方程;
(2) 設(shè)點(diǎn)
是拋物線上的兩點(diǎn),
的角平分線與
軸垂直,求
的面積最大時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,橢圓上的點(diǎn)到焦點(diǎn)的最小距離為
,離心率
.
(1)求橢圓
的方程;
(2)若直線
交
于
、
兩點(diǎn),點(diǎn)
,問是否存在
,使
?若存在求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知?jiǎng)訄A
與圓
相切,且與圓
相內(nèi)切,記圓心
的軌跡為曲線
;設(shè)
為曲線
上的一個(gè)不在
軸上的動(dòng)點(diǎn),
為坐標(biāo)原點(diǎn),過點(diǎn)
作
的平行線交曲線
于
兩個(gè)不同的點(diǎn).
(1)求曲線
的方程;
(2)試探究
和
的比值能否為一個(gè)常數(shù)?若能,求出這個(gè)常數(shù),若不能,請說明理由;
(3)記
的面積為
,
的面積為
,令
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,橢圓
的離心率為
,過橢圓右焦點(diǎn)
作兩條互相垂直的弦
與
.當(dāng)直線
斜率為0時(shí),
.![]()
(1)求橢圓的方程;
(2)求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
(
)的右焦點(diǎn)為
,且橢圓
過點(diǎn)
.
(1)求橢圓
的方程;
(2)設(shè)斜率為
的直線
與橢圓
交于不同兩點(diǎn)
、
,以線段
為底邊作等腰三角形
,其中頂點(diǎn)
的坐標(biāo)為
,求△
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)P是圓
上的動(dòng)點(diǎn),點(diǎn)D是P在
軸上投影,M為PD上一點(diǎn),且
.![]()
(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)求過點(diǎn)(3,0)且斜率為
的直線被C所截線段的長度.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com