理科已知函數(shù)
,當(dāng)
時(shí),函數(shù)
取得極大值.
(Ⅰ)求實(shí)數(shù)
的值;(Ⅱ)已知結(jié)論:若函數(shù)
在區(qū)間
內(nèi)導(dǎo)數(shù)都存在,且
,則存在
,使得
.試用這個(gè)結(jié)論證明:若
,函數(shù)
,則對(duì)任意
,都有
;(Ⅲ)已知正數(shù)
滿足
求證:當(dāng)
,
時(shí),對(duì)任意大于
,且互不相等的實(shí)數(shù)
,都有![]()
(Ⅰ)m=-1;(Ⅱ)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而證明不等式;(Ⅲ)利用數(shù)學(xué)歸納法證明
解析試題分析:(Ⅰ)
. 由
,得
,此時(shí)
.
當(dāng)
時(shí),
,函數(shù)
在區(qū)間
上單調(diào)遞增;
當(dāng)
時(shí),
,函數(shù)
在區(qū)間
上單調(diào)遞減.
函數(shù)
在
處取得極大值,故
. 3分
(Ⅱ)令
, 4分
則
.函數(shù)
在
上可導(dǎo),
存在
,使得
.又![]()
![]()
當(dāng)
時(shí),
,
單調(diào)遞增,
;
當(dāng)
時(shí),
,
單調(diào)遞減,
;
故對(duì)任意
,都有
. 8分
(Ⅲ)用數(shù)學(xué)歸納法證明.
①當(dāng)
時(shí),
,且
,
,
,
由(Ⅱ)得
,即
,
當(dāng)
時(shí),結(jié)論成立. 9分
②假設(shè)當(dāng)
時(shí)結(jié)論成立,即當(dāng)
時(shí),
. 當(dāng)
時(shí),設(shè)正數(shù)
滿足
令
,
則
,且
.![]()
13分
當(dāng)
時(shí),結(jié)論也成立.
綜上由①②,對(duì)任意
,
,結(jié)論恒成立. 14分
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):近幾年新課標(biāo)高考對(duì)于函數(shù)與導(dǎo)數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指數(shù)、對(duì)數(shù))函數(shù)的組合復(fù)合且含有參量的函數(shù)為背景載體,解題時(shí)要注意對(duì)數(shù)式對(duì)函數(shù)定義域的隱蔽,這類問題重點(diǎn)考查函數(shù)單調(diào)性、導(dǎo)數(shù)運(yùn)算、不等式方程的求解等基本知識(shí),注重?cái)?shù)學(xué)思想(分類與整合、數(shù)與形的結(jié)合)方法(分析法、綜合法、數(shù)學(xué)歸納法)的運(yùn)用.把數(shù)學(xué)運(yùn)算的“力量”與數(shù)學(xué)思維的“技巧”完美結(jié)合.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)求它的定義域,值域;(2)判定它的奇偶性和周期性;(3)判定它的單調(diào)區(qū)間及每一區(qū)間上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過P(1,0),且在P點(diǎn)處的切線斜率為2.
(1)求a,b的值;
(2)證明:f(x)≤2x-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
。
(1)若
在
處取得極值,求
的值;
(2)求
的單調(diào)區(qū)間;
(3)若
且
,函數(shù)
,若對(duì)于
,總存在
使得
,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)若函數(shù)
無零點(diǎn),求實(shí)數(shù)
的取值范圍;
(Ⅱ)若函數(shù)
在
有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若
,函數(shù)
是R上的奇函數(shù),當(dāng)
時(shí)
,(i)求實(shí)數(shù)
與![]()
的值;(ii)當(dāng)
時(shí),求
的解析式;
(2)若方程
的兩根中,一根屬于區(qū)間
,另一根屬于區(qū)間
,求實(shí)數(shù)
的取 值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
,函數(shù)![]()
①當(dāng)
時(shí),求函數(shù)
的表達(dá)式;
②若
,函數(shù)
在
上的最小值是2 ,求
的值;
③在②的條件下,求直線
與函數(shù)
的圖象所圍成圖形的面積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com