已知橢圓
的離心率為
,且過點
.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為
的直線
與橢圓相交于不同的兩點
,試問在
軸上是否存在點
,使
是與
無關的常數?若存在,求出點
的坐標;若不存在,請說明理由.
(1)橢圓方程為
。
(2)在x軸上存在點M(
), 使
是與K無關的常數.
解析試題分析:(1)∵橢圓離心率為
,
∴
,∴
. 1分
又
橢圓過點(
,1),代入橢圓方程,得
. 2分
所以
. 4分
∴橢圓方程為
,即
. 5分
(2)在x軸上存在點M
,使
是與K無關的常數. 6分
證明:假設在x軸上存在點M(m,0),使
是與k無關的常數,
∵直線L過點C(-1,0)且斜率為K,∴L方程為
,
由
得
. 7分
設
,則
8分
∵![]()
∴
9分
=![]()
=![]()
=![]()
=
10分
設常數為t,則
. 11分
整理得
對任意的k恒成立,
解得
, 12分
即在x軸上存在點M(
), 使
是與K無關的常數. 13分
考點:橢圓的標準方程及幾何性質,直線與橢圓的位置關系,平面向量的數量積。
點評:中檔題,曲線關系問題,往往通過聯立方程組,得到一元二次方程,運用韋達定理。求橢圓標準方程時,主要運用了橢圓的幾何性質,建立了a,bac的方程組。(2)作為研究
,應用韋達定理,建立了m的函數式,利用函數觀點,求得m的值,肯定存在性,使問題得解。
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點在
軸上,且過點
.![]()
(Ⅰ)求拋物線的標準方程;
(Ⅱ)與圓
相切的直線
交拋物線于不同的兩點
若拋物線上一點
滿足![]()
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,動點
到兩點
,
的距離之和等于4,設點
的軌跡為曲線C,直線過點
且與曲線C交于A,B兩點.
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
,離心率為
,焦點
過
的直線交橢圓于
兩點,且
的周長為4.
(Ⅰ)求橢圓方程;
(Ⅱ) 直線
與y軸交于點P(0,m)(m
0),與橢圓C交于相異兩點A,B且
.若
,求m的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
方程為
,過右焦點斜率為1的直線到原點的距離為
.![]()
(1)求橢圓方程.
(2)已知
為橢圓的左右兩個頂點,
為橢圓在第一象限內的一點,
為過點
且垂直
軸的直線,點
為直線
與直線
的交點,點
為以
為直徑的圓與直線
的一個交點,求證:
三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓
的左焦點為
,離心率為
,過點
且與
軸垂直的直線被橢圓截得的線段長為
.
(1) 求橢圓方程.
(2) 過點
的直線
與橢圓交于不同的兩點
,當
面積最大時,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系
中,
、
分別是橢圓
的頂點,過坐標原點的直線交橢圓于
、
兩點,其中
在第一象限.過
作
軸的垂線,垂足為
.連接
,并延長交橢圓于點
.設直線
的斜率為
.![]()
(Ⅰ)當直線
平分線段
時,求
的值;
(Ⅱ)當
時,求點
到直線
的距離;
(Ⅲ)對任意
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:
+
=1(a>b>0)的離心率為
,過右焦點F的直線l與C相交于A、B兩點,當l的斜率為1時,坐標原點O到l的距離為
.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點P,使得當l繞F轉到某一位置時,有
=
+
成立?若存在,求出所有的P的坐標與l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,設AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F兩點,連結AE,AF分別與CD交于G、H![]()
(Ⅰ)設EF中點為
,求證:O、
、B、P四點共圓
(Ⅱ)求證:OG =OH.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com