一個幾何體是由圓柱
和三棱錐
組合而成,點(diǎn)
、
、
在圓
的圓周上,其正(主)視圖、側(cè)(左)視圖的面積分別為10和12,如圖4所示,其中
,
,
,
.![]()
(1)求證:
;
(2)求三棱錐
的體積.
(1) 證明過程詳見解析(2) ![]()
解析試題分析:
(1)要證明
,只需要考慮證明AC垂直于BD所在的面,即
面ABD,所以證明AC與AD,AB垂直即可,而AE與AD在同一條直線上且AE垂直于AC所在的一個面,根據(jù)線面垂直的性質(zhì),即可得到AC與AD垂直,而AC與AB垂直題目已給,所以能證明AC與面BCD垂直,進(jìn)而證明AC與BD垂直.
(2)首先根據(jù)題目所給正視圖與側(cè)視圖的面積,求出三角形AOE的面積,得到AO的長,再根據(jù)OA等腰直角三顆星ABC斜邊的中線,即可求出等腰直角三顆星三條邊的長度,進(jìn)而得到三角形的面積,根據(jù)正視圖的面積為三角形AOE與矩形
的面積和
得到AD的長,而所求三棱錐的體積可以分為三棱
與
兩個部分,兩部分都以三角形ABC為底面,分別以AE與AD為高,且都已知,進(jìn)而可以求出三棱錐
.
試題解析:
(1)證明:
面
(即
面ABC)且
面ABC
又
且
面ABD,![]()
面ABD
面ABD![]()
(2)因?yàn)檎晥D和側(cè)視圖的面積分別為11和12,所以
,又因?yàn)锳E=2,所以O(shè)A=1,
,因?yàn)檎晥D的面積為11,所以
,因?yàn)榈酌嫒切蜛BC為等腰直角三角形且斜邊的中線OA=1,所以
,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3a/8/1d7lv3.png" style="vertical-align:middle;" />面ABC且
面ABC,所以![]()
,綜上
.
考點(diǎn):三視圖 垂直 圓柱
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABC
A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.![]()
(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C=
,求三棱柱ABC
A1B1C1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在邊長為4的菱形ABCD中,∠DAB=60°,點(diǎn)E、F分別在邊CD、CB上,點(diǎn)E與點(diǎn)C、D不重合,EF⊥AC,EF∩AC=O,沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.![]()
(1)求證:BD⊥平面POA;
(2)記三棱錐PABD體積為V1,四棱錐PBDEF體積為V2,且
,求此時線段PO的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角梯形ABCD中,AB∥CD,AD⊥AB,CD=2AB=4,AD=
,E為CD的中點(diǎn),將△BCE沿BE折起,使得CO⊥DE,其中垂足O在線段DE內(nèi).![]()
(1)求證:CO⊥平面ABED;
(2)問∠CEO(記為θ)多大時,三棱錐C-AOE的體積最大,最大值為多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
下圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.![]()
(1)若
為
的中點(diǎn),求證:![]()
面
;
(2)證明
面
.
(3)求該幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在
中,AB=2BF=4,C,E分別是AB,AF的中點(diǎn)(如下左圖).將此三角形沿CE對折,使平面AEC⊥平面BCEF(如下右圖),已知D是AB的中點(diǎn).![]()
(1)求證:CD∥平面AEF;
(2)求證:平面AEF⊥平面ABF;
(3)求三棱錐C-AEF的體積,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在底面是正方形的四棱錐
中,![]()
面
,
交
于點(diǎn)
,
是
中點(diǎn),
為
上一動點(diǎn).![]()
(1)求證:
;
(1)確定點(diǎn)
在線段
上的位置,使
//平面
,并說明理由.
(3)如果PA=AB=2,求三棱錐B-CDF的體積
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com