已知函數(shù)
,函數(shù)
的導(dǎo)函數(shù)
,且
,其中
為自然對數(shù)的底數(shù).
(1)求
的極值;
(2)若
,使得不等式
成立,試求實(shí)數(shù)
的取值范圍;
(1)當(dāng)
時(shí),
沒有極值;當(dāng)
時(shí),
存在極大值,且當(dāng)
時(shí),
;(2)
.
解析試題分析:(1)對
求導(dǎo)可得![]()
,由極值定義可知要對
進(jìn)行分類討論,當(dāng)
,
,函數(shù)無極值,當(dāng)
時(shí),可得當(dāng)
存在極大值;(2) 由函數(shù)
的導(dǎo)函數(shù)
,且
,得
,可知不等式
變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/00/a/lwxht2.png" style="vertical-align:middle;" />,求出![]()
的取值范圍,可得m的范圍.
解:(1) 函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a3/3/1dfpz3.png" style="vertical-align:middle;" />,![]()
.
當(dāng)
時(shí),
,
在
上為增函數(shù),
沒有極值;當(dāng)
時(shí),
,
若
時(shí),
;若
時(shí),![]()
存在極大值,且當(dāng)
時(shí),![]()
綜上可知:當(dāng)
時(shí),
沒有極值;當(dāng)
時(shí),
存在極大值,且當(dāng)
時(shí),
(2)
函數(shù)
的導(dǎo)函數(shù)
,![]()
![]()
,![]()
,![]()
![]()
,使得不等式
成立,![]()
,使得
成立,
對于
,
,由于
,
當(dāng)
時(shí),![]()
,
,
,
,從而
在
上為減函數(shù),![]()
![]()
考點(diǎn):1.導(dǎo)數(shù)的運(yùn)算;2.函數(shù)的極值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
.
(1)若曲線
在點(diǎn)
處的切線方程為
,求函數(shù)
的解析式;
(2)討論函數(shù)
的單調(diào)性;
(3)若對于任意的
,不等式
在
上恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
,函數(shù)![]()
⑴當(dāng)
時(shí),求函數(shù)
的表達(dá)式;
⑵若
,函數(shù)
在
上的最小值是2 ,求
的值;
(3)⑵的條件下,求直線
與函數(shù)
的圖象所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否存在實(shí)數(shù)a,使函數(shù)f(x)=loga(ax2-x)在區(qū)間[2,4]上是增函數(shù)?如果存在,求出a的取值范圍;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln x+2x,g(x)=a(x2+x).
(1)若a=
,求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為
元,并且每件產(chǎn)品需向總公司交
元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為
元(
)時(shí),一年的銷售量為
萬件.
(1)求該分公司一年的利潤
(萬元)與每件產(chǎn)品的售價(jià)
的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該分公司一年的利潤
最大?并求出
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)(2011•廣東)設(shè)a>0,討論函數(shù)f(x)=lnx+a(1﹣a)x2﹣2(1﹣a)x的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
).
(1)若
,求函數(shù)
的極值;
(2)設(shè)
.
① 當(dāng)
時(shí),對任意
,都有
成立,求
的最大值;
② 設(shè)
的導(dǎo)函數(shù).若存在
,使
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N +),其中xn為正實(shí)數(shù).
(1)用xn表示xn+1;
(2)若x1=4,記an=lg
,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(3)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com